Laboratory of Biophysical Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
Laboratory of Biophysical Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
Biochem Biophys Res Commun. 2024 Jun 4;711:149891. doi: 10.1016/j.bbrc.2024.149891. Epub 2024 Apr 6.
Microorganisms synthesize a plethora of complex secondary metabolites, many of which are beneficial to human health, such as anticancer agents and antibiotics. Among these, the Sungeidines are a distinct class of secondary metabolites known for their bulky and intricate structures. They are produced by a specific biosynthetic gene cluster within the genome of the soil-dwelling actinomycete Micromonospora sp. MD118. A notable enzyme in the Sungeidine biosynthetic pathway is the activating sulfotransferase SgdX2. In this pathway, SgdX2 mediates a key sulfation step, after which the product undergoes spontaneous dehydration to yield a Sungeidine compound. To delineate the structural basis for SgdX2's substrate recognition and catalytic action, we have determined the crystal structure of SgdX2 in complex with its sulfate donor product, 3'-phosphoadenosine 5'-phosphate (PAP), at a resolution of 1.6 Å. Although SgdX2 presents a compact overall structure, its core elements are conserved among other activating sulfotransferases. Our structural analysis reveals a unique substrate-binding pocket that accommodates bulky, complex substrates, suggesting a specialized adaptation for Sungeidine synthesis. Moreover, we have constructed a substrate docking model that provides insights into the molecular interactions between SgdX2 and Sungeidine F, enhancing our understanding of the enzyme's specificity and catalytic mechanism. The model supports a general acid-base catalysis mechanism, akin to other sulfotransferases, and underscores the minor role of disordered regions in substrate recognition. This integrative study of crystallography and computational modeling advances our knowledge of microbial secondary metabolite biosynthesis and may facilitate the development of novel biotechnological applications.
微生物合成了大量复杂的次级代谢产物,其中许多对人类健康有益,如抗癌剂和抗生素。在这些次级代谢产物中,Sungeidines 是一类独特的次级代谢产物,以其庞大而复杂的结构而闻名。它们是由土壤放线菌 Micromonospora sp. MD118 基因组内的特定生物合成基因簇产生的。Sungeidine 生物合成途径中的一种显著酶是激活硫酸转移酶 SgdX2。在这个途径中,SgdX2 介导了一个关键的硫酸化步骤,之后产物会自发脱水生成 Sungeidine 化合物。为了描绘 SgdX2 底物识别和催化作用的结构基础,我们已经确定了 SgdX2 与硫酸盐供体产物 3'-磷酸腺苷 5'-磷酸(PAP)复合物的晶体结构,分辨率为 1.6 Å。尽管 SgdX2 呈现出紧凑的整体结构,但它的核心元素在其他激活硫酸转移酶中是保守的。我们的结构分析揭示了一个独特的底物结合口袋,可容纳庞大而复杂的底物,表明其对 Sungeidine 合成具有专门的适应性。此外,我们构建了一个底物对接模型,深入了解了 SgdX2 和 Sungeidine F 之间的分子相互作用,增强了我们对酶特异性和催化机制的理解。该模型支持一种类似于其他硫酸转移酶的广义酸碱催化机制,并强调了无序区域在底物识别中的次要作用。该晶体学和计算建模的综合研究增进了我们对微生物次级代谢产物生物合成的认识,并可能促进新型生物技术应用的发展。