Fu Rui, Xu Mengyu, Wang Yujing, Wu Xinxin, Bao Xiaoguang
Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China.
Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China.
Angew Chem Int Ed Engl. 2024 Jun 21;63(26):e202406069. doi: 10.1002/anie.202406069. Epub 2024 May 21.
The construction of C(sp)-N bonds via direct N-centered radical addition with olefins under benign conditions is a desirable but challenging strategy. Herein, we describe an organo-photocatalytic approach to achieve anti-Markovnikov alkene hydroamidation with sulfonyl azides in a highly efficient manner under transition-metal-free and mild conditions. A broad range of substrates, including both activated and unactivated alkenes, are suitable for this protocol, providing a convenient and practical method to construct sulfonylamide derivatives. A synergistic experimental and computational mechanistic study suggests that the additive, Hantzsch ester (HE), might undergo a triplet-triplet energy transfer manner to achieve photosensitization by the organo-photocatalyst under visible light irradiation. Next, the resulted triplet excited state HE* could lead to a homolytic cleavage of C-H bond, which triggers a straightforward H-atom transfer (HAT) style in converting sulfonyl azide to the corresponding key amidyl radical. Subsequently, the addition of the amidyl radical to alkene followed by HAT from p-toluenethiol could proceed to afford the desired anti-Markovnikov hydroamidation product. It is worth noting that mechanistic pathway bifurcation could be possible for this reaction. A feasible radical chain propagation mechanistic pathway is also proposed to rationalize the high efficiency of this reaction.
在温和条件下通过直接的以氮为中心的自由基与烯烃加成来构建C(sp)-N键是一种理想但具有挑战性的策略。在此,我们描述了一种有机光催化方法,可在无过渡金属和温和的条件下高效地实现反马氏规则的烯烃与磺酰叠氮化物的氢氨化反应。包括活化和未活化烯烃在内的多种底物都适用于该方案,为构建磺酰胺衍生物提供了一种方便实用的方法。一项协同的实验和计算机理研究表明,添加剂汉斯酯(HE)可能以三重态-三重态能量转移的方式在可见光照射下通过有机光催化剂实现光敏化。接下来,产生的三重态激发态HE*可导致C-H键的均裂,从而在将磺酰叠氮化物转化为相应的关键酰胺基自由基时引发直接的氢原子转移(HAT)方式。随后,酰胺基自由基加成到烯烃上,接着从对甲苯硫醇进行氢原子转移,从而得到所需的反马氏规则氢氨化产物。值得注意的是,该反应可能存在机理途径分支。还提出了一种可行的自由基链传播机理途径,以解释该反应的高效率。