Suppr超能文献

在存在实际风速分布的情况下,使用人工神经网络增强双馈感应发电机的控制。

Enhancing the control of doubly fed induction generators using artificial neural networks in the presence of real wind profiles.

机构信息

Energetic Laboratory, Department of physics, Faculty of science Tetouan, Abdelmalek Essaadi University, Tetouan, Morocco.

Industrial Technologies and Services Laboratory, Higher School of Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco.

出版信息

PLoS One. 2024 Apr 17;19(4):e0300527. doi: 10.1371/journal.pone.0300527. eCollection 2024.

Abstract

This study tackles the complex task of integrating wind energy systems into the electric grid, facing challenges such as power oscillations and unreliable energy generation due to fluctuating wind speeds. Focused on wind energy conversion systems, particularly those utilizing double-fed induction generators (DFIGs), the research introduces a novel approach to enhance Direct Power Control (DPC) effectiveness. Traditional DPC, while simple, encounters issues like torque ripples and reduced power quality due to a hysteresis controller. In response, the study proposes an innovative DPC method for DFIGs using artificial neural networks (ANNs). Experimental verification shows ANNs effectively addressing issues with the hysteresis controller and switching table. Additionally, the study addresses wind speed variability by employing an artificial neural network to directly control reactive and active power of DFIG, aiming to minimize challenges with varying wind speeds. Results highlight the effectiveness and reliability of the developed intelligent strategy, outperforming traditional methods by reducing current harmonics and improving dynamic response. This research contributes valuable insights into enhancing the performance and reliability of renewable energy systems, advancing solutions for wind energy integration complexities.

摘要

本研究致力于解决将风能系统集成到电网中的复杂任务,面临因风速波动导致的功率振荡和不可靠能源发电等挑战。该研究侧重于风力发电转换系统,特别是利用双馈感应发电机(DFIG)的系统,引入了一种增强直接功率控制(DPC)效果的新方法。传统的 DPC 虽然简单,但由于磁滞控制器会遇到转矩纹波和降低功率质量等问题。因此,研究提出了一种使用人工神经网络(ANNs)的新型 DFIG 的 DPC 方法。实验验证表明,ANNs 有效地解决了磁滞控制器和开关表的问题。此外,该研究通过使用人工神经网络直接控制 DFIG 的无功和有功功率来解决风速变化的问题,旨在最小化因风速变化带来的挑战。研究结果突出了所开发智能策略的有效性和可靠性,通过减少电流谐波和改善动态响应,优于传统方法。这项研究为提高可再生能源系统的性能和可靠性提供了有价值的见解,为解决风能集成的复杂性提供了方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc5e/11023233/11ac6fddedcf/pone.0300527.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验