Suppr超能文献

设计一种具有仿生爪钩-吸盘混合结构的驱动器用于软体机器人。

Design of an actuator with bionic claw hook-suction cup hybrid structure for soft robot.

机构信息

School of Mechanical Engineering, Jiangsu University, Zhenjiang City 212013, Jiangsu Province, People's Republic of China.

出版信息

Bioinspir Biomim. 2024 Apr 29;19(3). doi: 10.1088/1748-3190/ad3ff7.

Abstract

To improve the adaptability of soft robots to the environment and achieve reliable attachment on various surfaces such as smooth and rough, this study draws inspiration from the collaborative attachment strategy of insects, cats, and other biological claw hooks and foot pads, and designs an actuator with a bionic claw hook-suction cup hybrid structure. The rigid biomimetic pop-up claw hook linkage mechanism is combined with a flexible suction cup of a 'foot pad' to achieve a synergistic adhesion effect between claw hook locking and suction cup adhesion through the deformation control of a soft pneumatic actuator. A pop-up claw hook linkage mechanism based on the principle of cat claw movement was designed, and the attachment mechanism of the biological claw hooks and footpads was analysed. An artificial muscle-spring-reinforced flexible pneumatic actuator (SRFPA) was developed and a kinematic model of the SRFPA was established and analysed using Abaqus. Finally, a prototype of the hybrid actuator was fabricated. The kinematic and mechanical performances of the SRFPA and entire actuator were characterised, and the attachment performance of the hybrid actuator to smooth and rough surfaces was tested. The results indicate that the proposed biomimetic claw hook-suction cup hybrid structure actuator is effective for various types of surface adhesion, object grasping, and robot walking. This study provides new insights for the design of highly adaptable robots and biomimetic attachment devices.

摘要

为了提高软体机器人对环境的适应性,实现在光滑和粗糙等各种表面上的可靠附着,本研究从昆虫、猫等生物爪钩和脚垫的协同附着策略中汲取灵感,设计了一种具有仿生爪钩-吸盘混合结构的驱动器。刚性仿生弹出爪钩连杆机构与“脚垫”的柔性吸盘相结合,通过软气动执行器的变形控制实现爪钩锁定和吸盘附着的协同附着效果。设计了一种基于猫爪运动原理的弹出爪钩连杆机构,并对生物爪钩和脚垫的附着机制进行了分析。开发了一种人工肌肉-弹簧增强型柔性气动执行器(SRFPA),并使用 Abaqus 对其进行了运动学建模和分析。最后,制造了混合驱动器的原型。对 SRFPA 和整个驱动器的运动学和机械性能进行了表征,并测试了混合驱动器在光滑和粗糙表面上的附着性能。结果表明,所提出的仿生爪钩-吸盘混合结构驱动器可有效实现各种类型的表面附着、物体抓取和机器人行走。本研究为高度适应性机器人和仿生附着装置的设计提供了新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验