Suppr超能文献

人工智能评估肌肉减少症和脂肪组织可预测 TAVI 后的总体生存率。

Sarcopenia and adipose tissue evaluation by artificial intelligence predicts the overall survival after TAVI.

机构信息

Hospital AGEL Třinec-Podlesí, Konská 453, 739 61, Třinec, Czech Republic.

Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.

出版信息

Sci Rep. 2024 Apr 17;14(1):8842. doi: 10.1038/s41598-024-59134-z.

Abstract

Sarcopenia is a serious systemic disease that reduces overall survival. TAVI is selectively performed in patients with severe aortic stenosis who are not indicated for open cardiac surgery due to severe polymorbidity. Artificial intelligence-assisted body composition assessment from available CT scans appears to be a simple tool to stratify these patients into low and high risk based on future estimates of all-cause mortality. Within our study, the segmentation of preprocedural CT scans at the level of the lumbar third vertebra in patients undergoing TAVI was performed using a neural network (AutoMATiCA). The obtained parameters (area and density of skeletal muscles and intramuscular, visceral, and subcutaneous adipose tissue) were analyzed using Cox univariate and multivariable models for continuous and categorical variables to assess the relation of selected variables with all-cause mortality. 866 patients were included (median(interquartile range)): age 79.7 (74.9-83.3) years; BMI 28.9 (25.9-32.6) kg/m. Survival analysis was performed on all automatically obtained parameters of muscle and fat density and area. Skeletal muscle index (SMI in cm/m), visceral (VAT in HU) and subcutaneous adipose tissue (SAT in HU) density predicted the all-cause mortality in patients after TAVI expressed as hazard ratio (HR) with 95% confidence interval (CI): SMI HR 0.986, 95% CI (0.975-0.996); VAT 1.015 (1.002-1.028) and SAT 1.014 (1.004-1.023), all p < 0.05. Automatic body composition assessment can estimate higher all-cause mortality risk in patients after TAVI, which may be useful in preoperative clinical reasoning and stratification of patients.

摘要

肌肉减少症是一种严重的全身性疾病,会降低整体存活率。经导管主动脉瓣置换术(TAVI)选择性用于因严重多系统疾病而不适合开胸心脏手术的严重主动脉瓣狭窄患者。基于未来全因死亡率的估计,利用现有 CT 扫描进行人工智能辅助的身体成分评估,似乎是一种将这些患者分为低危和高危的简单工具。在我们的研究中,对接受 TAVI 的患者的第 3 腰椎水平的术前 CT 扫描进行了神经网络(AutoMATiCA)分割。使用 Cox 单变量和多变量模型分析获得的参数(骨骼肌和肌内、内脏和皮下脂肪组织的面积和密度),以评估选定变量与全因死亡率的关系。共纳入 866 例患者(中位数(四分位距)):年龄 79.7(74.9-83.3)岁;BMI 28.9(25.9-32.6)kg/m。对所有自动获得的肌肉和脂肪密度及面积参数进行生存分析。骨骼肌指数(SMI 以 cm/m 表示)、内脏(VAT 以 HU 表示)和皮下脂肪组织(SAT 以 HU 表示)密度预测了 TAVI 后患者的全因死亡率,表现为风险比(HR)及其 95%置信区间(CI):SMI HR 0.986,95% CI(0.975-0.996);VAT 1.015(1.002-1.028)和 SAT 1.014(1.004-1.023),均 p<0.05。自动身体成分评估可评估 TAVI 后患者的全因死亡率风险更高,这可能有助于术前临床决策和患者分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b57/11024085/3b524c26e620/41598_2024_59134_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验