Suppr超能文献

基于深度强化学习的毫米波大规模MIMO-NOMA系统频谱高效用户分组与资源分配

Spectrum-efficient user grouping and resource allocation based on deep reinforcement learning for mmWave massive MIMO-NOMA systems.

作者信息

Wang Minghao, Liu Xin, Wang Fang, Liu Yang, Qiu Tianshuang, Jin Minglu

机构信息

College of Electronic Information Engineering, Inner Mongolia University, Hohhot, 010021, China.

Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024, China.

出版信息

Sci Rep. 2024 Apr 17;14(1):8884. doi: 10.1038/s41598-024-59241-x.

Abstract

Millimeter-wave (mmWave) massive multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) is proven to be a primary technique for sixth-generation (6G) wireless communication networks. However, the great increase in users and antennas brings challenges for interference suppression and resource allocation for mmWave massive MIMO-NOMA systems. This study proposes a spectrum-efficient and fast convergence deep reinforcement learning (DRL)-based resource allocation framework to optimize user grouping and allocation of subchannel and power. First, an enhanced K-means grouping algorithm is proposed to reduce the multi-user interference and accelerate the convergence. Then, a dueling deep Q-network (DQN) structure is proposed to perform subchannel allocation, which further improves the convergence speed. Moreover, a deep deterministic policy gradient (DDPG)-based power resource allocation algorithm is designed to avoid the performance loss caused by power quantization and improve the system's achievable sum-rate. The simulation results demonstrate that our proposed scheme outperforms other neural network-based algorithms in terms of convergence performance, and can achieve higher system capacity compared with the greedy algorithm, the random algorithm, the RNN algorithm, and the DoubleDQN algorithm.

摘要

毫米波(mmWave)大规模多输入多输出非正交多址接入(MIMO-NOMA)被证明是第六代(6G)无线通信网络的一项关键技术。然而,用户和天线数量的大幅增加给毫米波大规模MIMO-NOMA系统的干扰抑制和资源分配带来了挑战。本研究提出了一种基于频谱效率和快速收敛的深度强化学习(DRL)的资源分配框架,以优化用户分组以及子信道和功率分配。首先,提出了一种增强型K均值分组算法,以减少多用户干扰并加速收敛。然后,提出了一种决斗深度Q网络(DQN)结构来进行子信道分配,这进一步提高了收敛速度。此外,设计了一种基于深度确定性策略梯度(DDPG)的功率资源分配算法,以避免功率量化导致的性能损失,并提高系统的可达和速率。仿真结果表明,我们提出的方案在收敛性能方面优于其他基于神经网络的算法,并且与贪婪算法、随机算法、RNN算法和DoubleDQN算法相比,可以实现更高的系统容量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a125/11538514/347c14315ebf/41598_2024_59241_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验