Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy.
Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Commun Biol. 2024 Apr 17;7(1):468. doi: 10.1038/s42003-024-06069-w.
Bacterial species often comprise well-separated lineages, likely emerged and maintained by genetic isolation and/or ecological divergence. How these two evolutionary actors interact in the shaping of bacterial population structure is currently not fully understood. In this study, we investigate the genetic and ecological drivers underlying the evolution of Serratia marcescens, an opportunistic pathogen with high genomic flexibility and able to colonise diverse environments. Comparative genomic analyses reveal a population structure composed of five deeply-demarcated genetic clusters with open pan-genome but limited inter-cluster gene flow, partially explained by Restriction-Modification (R-M) systems incompatibility. Furthermore, a large-scale research on hundred-thousands metagenomic datasets reveals only a partial habitat separation of the clusters. Globally, two clusters only show a separate gene composition coherent with ecological adaptations. These results suggest that genetic isolation has preceded ecological adaptations in the shaping of the species diversity, an evolutionary scenario coherent with the Evolutionary Extended Synthesis.
细菌物种通常由明显分离的谱系组成,这些谱系可能是通过遗传隔离和/或生态分歧而产生和维持的。目前,人们尚不完全了解这两个进化因素在塑造细菌种群结构方面的相互作用。在这项研究中,我们调查了粘质沙雷氏菌进化的遗传和生态驱动因素,粘质沙雷氏菌是一种具有高基因组灵活性并能够定植于多种环境的机会性病原体。比较基因组分析揭示了一个由五个深度分隔的遗传群组成的种群结构,具有开放的泛基因组,但群间基因流动有限,这部分可以用限制修饰(R-M)系统的不兼容性来解释。此外,对数十万宏基因组数据集的大规模研究仅揭示了这些群的部分栖息地分离。总体而言,只有两个群显示出与生态适应相一致的、独立的基因组成。这些结果表明,在物种多样性的形成过程中,遗传隔离先于生态适应,这一进化情景与进化扩展综合一致。