Roh Heejung, Kim Dong-Ha, Cho Yeongsu, Jo Young-Moo, Del Alamo Jesús A, Kulik Heather J, Dincă Mircea, Gumyusenge Aristide
Massachusetts Institute of Technology, Department of Materials Science & Engineering, 77 Massachusetts Ave, Cambridge, MA, 02139, USA.
Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Ave, Cambridge, MA, 02139, USA.
Adv Mater. 2024 Jul;36(27):e2312382. doi: 10.1002/adma.202312382. Epub 2024 Apr 28.
Metal-organic frameworks (MOFs) are promising materials for gas sensing but are often limited to single-use detection. A hybridization strategy is demonstrated synergistically deploying conductive MOFs (cMOFs) and conductive polymers (cPs) as two complementary mixed ionic-electronic conductors in high-performing stand-alone chemiresistors. This work presents significant improvement in i) sensor recovery kinetics, ii) cycling stability, and iii) dynamic range at room temperature. The effect of hybridization across well-studied cMOFs is demonstrated based on 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and 2,3,6,7,10,11-hexaiminotriphenylene (HITP) ligands with varied metal nodes (Co, Cu, Ni). A comprehensive mechanistic study is conducted to relate energy band alignments at the heterojunctions between the MOFs and the polymer with sensing thermodynamics and binding kinetics. The findings reveal that hole enrichment of the cMOF component upon hybridization leads to selective enhancement in desorption kinetics, enabling significantly improved sensor recovery at room temperature, and thus long-term response retention. This mechanism is further supported by density functional theory calculations on sorbate-analyte interactions. It is also found that alloying cPs and cMOFs enables facile thin film co-processing and device integration, potentially unlocking the use of these hybrid conductors in diverse electronic applications.
金属有机框架材料(MOFs)是用于气体传感的很有前景的材料,但通常限于一次性检测。本文展示了一种杂交策略,即协同部署导电金属有机框架材料(cMOFs)和导电聚合物(cPs),作为高性能独立化学电阻器中的两种互补的混合离子 - 电子导体。这项工作在以下方面取得了显著改进:i)传感器恢复动力学,ii)循环稳定性,以及iii)室温下的动态范围。基于具有不同金属节点(钴、铜、镍)的2,3,6,7,10,11 - 六羟基三亚苯(HHTP)和2,3,6,7,10,11 - 六亚氨基三亚苯(HITP)配体,展示了在深入研究的cMOFs上进行杂交的效果。进行了全面的机理研究,以关联MOFs与聚合物之间异质结处的能带排列与传感热力学和结合动力学。研究结果表明,杂交时cMOF组分的空穴富集导致解吸动力学的选择性增强,从而在室温下显著改善传感器恢复,进而实现长期响应保持。密度泛函理论对吸附质 - 分析物相互作用的计算进一步支持了这一机制。还发现将cPs和cMOFs合金化能够实现薄膜的共处理和器件集成,这有可能在各种电子应用中解锁这些混合导体的用途。