Suppr超能文献

基于 LC-QTOF-MS 的稀释-进样方法的建立及其在蜂蜜植物源性鉴别中的应用。

Development of a LC-QTOF-MS based dilute-and-shoot approach for the botanical discrimination of honeys.

机构信息

Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, QC, Canada.

Agilent Technologies, Santa Clara, CA, USA.

出版信息

Anal Chim Acta. 2024 May 22;1304:342536. doi: 10.1016/j.aca.2024.342536. Epub 2024 Mar 26.

Abstract

Honeys of particular botanical origins can be associated with premium market prices, a trait which also makes them susceptible to fraud. Currently available authenticity testing methods for botanical classification of honeys are either time-consuming or only target a few "known" types of markers. Simple and effective methods are therefore needed to monitor and guarantee the authenticity of honey. In this study, a 'dilute-and-shoot' approach using liquid chromatography (LC) coupled to quadrupole time-of-flight-mass spectrometry (QTOF-MS) was applied to the non-targeted fingerprinting of honeys of different floral origin (buckwheat, clover and blueberry). This work investigated for the first time the impact of different instrumental conditions such as the column type, the mobile phase composition, the chromatographic gradient, and the MS fragmentor voltage (in-source collision-induced dissociation) on the botanical classification of honeys as well as the data quality. Results indicated that the data sets obtained for the various LC-QTOF-MS conditions tested were all suitable to discriminate the three honeys of different floral origin regardless of the mathematical model applied (random forest, partial least squares-discriminant analysis, soft independent modelling by class analogy and linear discriminant analysis). The present study investigated different LC-QTOF-MS conditions in a "dilute and shoot" method for honey analysis, in order to establish a relatively fast, simple and reliable analytical method to record the chemical fingerprints of honey. This approach is suitable for marker discovery and will be used for the future development of advanced predictive models for honey botanical origin.

摘要

具有特殊植物来源的蜂蜜可以与优质市场价格相关联,这一特点也使它们容易受到欺诈。目前用于蜂蜜植物分类学的真实性测试方法要么耗时,要么只能针对少数“已知”类型的标记物。因此,需要简单有效的方法来监测和保证蜂蜜的真实性。在这项研究中,采用了一种“稀释-进样”的方法,使用液相色谱(LC)与四极杆飞行时间质谱(QTOF-MS)联用,对不同花卉来源的蜂蜜(荞麦、三叶草和蓝莓)进行非靶向指纹图谱分析。这项工作首次研究了不同仪器条件(如柱类型、流动相组成、色谱梯度和 MS 碎裂电压(源内碰撞诱导解离))对蜂蜜植物分类学以及数据质量的影响。结果表明,无论应用的数学模型(随机森林、偏最小二乘判别分析、类间独立建模和线性判别分析)如何,对于所测试的各种 LC-QTOF-MS 条件下获得的数据集,都可以区分三种不同花卉来源的蜂蜜。本研究在“稀释进样”方法中考察了不同的 LC-QTOF-MS 条件,以建立一种相对快速、简单和可靠的分析方法来记录蜂蜜的化学指纹图谱。这种方法适用于标记物的发现,并将用于未来开发蜂蜜植物起源的先进预测模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验