Department of Physiology, Anatomy and Genetics, Kavli Institute for NanoScience Discovery, University of Oxford, Oxford, UK.
Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.
J Neurochem. 2024 Sep;168(9):2543-2560. doi: 10.1111/jnc.16114. Epub 2024 Apr 20.
Glucocerebrosidase 1 (GBA1) mutations are the most important genetic risk factors for Parkinson's disease (PD). Clinically, mild (e.g., p.N370S) and severe (e.g., p.L444P and p.D409H) GBA1 mutations have different PD phenotypes, with differences in age at disease onset, progression, and the severity of motor and non-motor symptoms. We hypothesize that GBA1 mutations cause the accumulation of α-synuclein by affecting the cross-talk between cellular protein degradation mechanisms, leading to neurodegeneration. Accordingly, we tested whether mild and severe GBA1 mutations differentially affect the degradation of α-synuclein via the ubiquitin-proteasome system (UPS), chaperone-mediated autophagy (CMA), and macroautophagy and differentially cause accumulation and/or release of α-synuclein. Our results demonstrate that endoplasmic reticulum (ER) stress and total ubiquitination rates were significantly increased in cells with severe GBA1 mutations. CMA was found to be defective in induced pluripotent stem cell (iPSC)-derived dopaminergic neurons with mild GBA1 mutations, but not in those with severe GBA1 mutations. When examining macroautophagy, we observed reduced formation of autophagosomes in cells with the N370S and D409H GBA1 mutations and impairments in autophagosome-lysosome fusion in cells with the L444P GBA1 mutation. Accordingly, severe GBA1 mutations were found to trigger the accumulation and release of oligomeric α-synuclein in iPSC-derived dopaminergic neurons, primarily as a result of increased ER stress and defective macroautophagy, while mild GBA1 mutations affected CMA, which is mainly responsible for the degradation of the monomeric form of α-synuclein. Overall, our findings provide new insight into the molecular basis of the clinical variability in PD associated with different GBA1 mutations.
葡萄糖脑苷脂酶 1 (GBA1) 突变是帕金森病 (PD) 的最重要遗传风险因素。临床上,轻度 (例如 p.N370S) 和重度 (例如 p.L444P 和 p.D409H) GBA1 突变具有不同的 PD 表型,表现在发病年龄、进展和运动及非运动症状的严重程度方面存在差异。我们假设 GBA1 突变通过影响细胞蛋白降解机制的串扰导致α-突触核蛋白的积累,从而导致神经退行性变。因此,我们测试了轻度和重度 GBA1 突变是否通过泛素-蛋白酶体系统 (UPS)、伴侣介导的自噬 (CMA) 和巨自噬的不同途径影响α-突触核蛋白的降解,以及是否导致α-突触核蛋白的积累和/或释放。我们的结果表明,严重 GBA1 突变的细胞内质网 (ER) 应激和总泛素化率显著增加。在诱导多能干细胞 (iPSC) 衍生的多巴胺能神经元中,发现轻度 GBA1 突变会导致 CMA 缺陷,但重度 GBA1 突变不会。在检查巨自噬时,我们观察到 N370S 和 D409H GBA1 突变的细胞中自噬体的形成减少,以及 L444P GBA1 突变的细胞中自噬体-溶酶体融合受损。因此,严重的 GBA1 突变被发现会在 iPSC 衍生的多巴胺能神经元中触发寡聚体α-突触核蛋白的积累和释放,主要是由于 ER 应激增加和巨自噬缺陷,而轻度 GBA1 突变会影响 CMA,这主要负责单体形式的α-突触核蛋白的降解。总的来说,我们的研究结果为不同 GBA1 突变与帕金森病相关的临床变异性的分子基础提供了新的见解。