Suppr超能文献

用于管理淡水生态系统人为硫酸盐污染的生物电化学反应器:数学建模与实验验证。

Bioelectrochemical reactor to manage anthropogenic sulfate pollution for freshwater ecosystems: Mathematical modeling and experimental validation.

机构信息

Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN, 55811, USA; Current Address: Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.

Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN, 55811, USA; Department of Civil Engineering, University of Minnesota Duluth, Duluth, MN, 55805, USA.

出版信息

Chemosphere. 2024 Jun;357:142054. doi: 10.1016/j.chemosphere.2024.142054. Epub 2024 Apr 18.

Abstract

Anthropogenic sulfate loading into otherwise low-sulfate freshwater systems can cause significant ecological consequences as a biogeochemical stressor. To address this challenge, in situ bioremediation technologies have been developed to leverage naturally occurring microorganisms that transform sulfate into sulfide rather than implementing resource-intensive physio-chemical processes. However, bioremediation technologies often require the supply of electron donors to facilitate biological sulfate reduction. Bioelectrochemical systems (BES) can be an alternative approach for supplying molecular hydrogen as an electron donor for sulfate-reducing bacteria through water electrolysis. Although the fundamental mechanisms behind BESs have been studied, limited research has evaluated the design and operational parameters of treatment systems when developing BESs on a scale relevant to environmental systems. This study aimed to develop an application-based mathematical model to evaluate the performance of BESs across a range of reactor configurations and operational modes. The model was based on sulfate transformation by hydrogenotrophic sulfate-reducing bacteria coupled with the recovery of solid iron sulfide species formed by the oxidative dissolution of dissolved ferrous iron from a stainless steel anode. Sulfate removal closely corresponded to the rate of electrolytic hydrogen production and hydraulic residence time but was less sensitive to specific microbial rate constants. The mathematical model results were compared to experimental data from a pilot-scale BES tested with nonacidic mine drainage as a case study. The close agreement between the mathematical model and the pilot-scale BES experiment highlights the efficacy of using a mathematical model as a tool to develop a conceptual design of a scaled-up treatment system.

摘要

人为向原本硫酸盐含量低的淡水系统中添加硫酸盐会导致严重的生态后果,成为一种生物地球化学胁迫因素。为应对这一挑战,人们开发了原位生物修复技术,利用能够将硫酸盐转化为硫化物的天然存在的微生物,而不是采用资源密集型理化过程。然而,生物修复技术通常需要提供电子供体来促进生物硫酸盐还原。生物电化学系统(BES)可以通过水电解为硫酸盐还原菌提供分子氢作为电子供体,从而提供一种替代方法。尽管已经对 BES 的基本机制进行了研究,但在开发与环境系统相关规模的 BES 时,针对处理系统的设计和操作参数的研究有限。本研究旨在开发一种基于应用的数学模型,以评估在一系列反应器配置和操作模式下 BES 的性能。该模型基于氢营养型硫酸盐还原菌对硫酸盐的转化,以及通过不锈钢阳极溶解的二价铁的氧化溶解形成的固体硫化铁物种的回收。硫酸盐去除与电解氢气生成速率和水力停留时间密切相关,但对特定微生物速率常数的敏感性较低。将数学模型结果与以非酸性矿山排水为案例研究的中试规模 BES 的实验数据进行了比较。数学模型与中试规模 BES 实验之间的良好一致性突出了使用数学模型作为工具来开发规模化处理系统概念设计的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验