Departamento de Biotecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil.
Departamento de Biotecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil.
Biochim Biophys Acta Bioenerg. 2024 Aug 1;1865(3):149046. doi: 10.1016/j.bbabio.2024.149046. Epub 2024 Apr 19.
The respiratory chain alternative enzymes (AEs) NDX and AOX from the tunicate Ciona intestinalis (Ascidiacea) have been xenotopically expressed and characterized in human cells in culture and in the model organisms Drosophila melanogaster and mouse, with the purpose of developing bypass therapies to combat mitochondrial diseases in human patients with defective complexes I and III/IV, respectively. The fact that the genes coding for NDX and AOX have been lost from genomes of evolutionarily successful animal groups, such as vertebrates and insects, led us to investigate if the composition of the respiratory chain of Ciona and other tunicates differs significantly from that of humans and Drosophila, to accommodate the natural presence of AEs. We have failed to identify in tunicate genomes fifteen orthologous genes that code for subunits of the respiratory chain complexes; all of these putatively missing subunits are peripheral to complexes I, III and IV in mammals, and many are important for complex-complex interaction in supercomplexes (SCs), such as NDUFA11, UQCR11 and COX7A. Modeling of all respiratory chain subunit polypeptides of Ciona indicates significant structural divergence that is consistent with the lack of these fifteen clear orthologous subunits. We also provide evidence using Ciona AOX expressed in Drosophila that this AE cannot access the coenzyme Q pool reduced by complex I, but it is readily available to oxidize coenzyme Q molecules reduced by glycerophosphate oxidase, a mitochondrial inner membrane-bound dehydrogenase that is not involved in SCs. Altogether, our results suggest that Ciona AEs might have evolved in a mitochondrial inner membrane environment much different from that of mammals and insects, possibly without SCs; this correlates with the preferential functional interaction between these AEs and non-SC dehydrogenases in heterologous mammalian and insect systems. We discuss the implications of these findings for the applicability of Ciona AEs in human bypass therapies and for our understanding of the evolution of animal respiratory chain.
来自被囊动物海鞘(尾索动物)的呼吸链替代酶(AEs)NDX 和 AOX 已在培养的人类细胞和模式生物果蝇和小鼠中异源表达和表征,目的是开发针对分别患有缺陷复合物 I 和复合物 III/IV 的人类线粒体疾病的旁路治疗方法。编码 NDX 和 AOX 的基因已经从进化成功的动物群体(如脊椎动物和昆虫)的基因组中丢失,这一事实促使我们研究海鞘和其他被囊动物的呼吸链组成是否与人类和果蝇有显著差异,以适应 AEs 的自然存在。我们未能在被囊动物基因组中鉴定出编码呼吸链复合物亚基的 15 个同源基因;这些推定缺失的亚基在哺乳动物中都是复合物 I、III 和 IV 的外周,许多对于超级复合物(SCs)中的复合物-复合物相互作用很重要,例如 NDUFA11、UQCR11 和 COX7A。所有海鞘呼吸链亚基多肽的建模表明存在显著的结构差异,这与缺乏这 15 个明确的同源亚基一致。我们还使用在果蝇中表达的海鞘 AOX 提供了证据,表明这种 AE 无法进入由复合物 I 还原的辅酶 Q 池,但它很容易氧化甘油磷酸氧化酶还原的辅酶 Q 分子,甘油磷酸氧化酶是一种不参与 SC 的线粒体内膜结合脱氢酶。总之,我们的结果表明,海鞘 AEs 可能在与哺乳动物和昆虫不同的线粒体内膜环境中进化而来,可能没有 SC;这与这些 AE 在异源哺乳动物和昆虫系统中与非 SC 脱氢酶的优先功能相互作用相关。我们讨论了这些发现对海鞘 AEs 在人类旁路治疗中的适用性以及对动物呼吸链进化的理解的影响。