Tang XianFeng, Zhao Shuwei
Physical Education Department, Zhejiang Wanli University, Ningbo, China.
Physical Education Department, Hebei University of Technology, Tianjin, China.
Front Neurorobot. 2024 Apr 5;18:1374385. doi: 10.3389/fnbot.2024.1374385. eCollection 2024.
Service robot technology is increasingly gaining prominence in the field of artificial intelligence. However, persistent limitations continue to impede its widespread implementation. In this regard, human motion pose estimation emerges as a crucial challenge necessary for enhancing the perceptual and decision-making capacities of service robots.
This paper introduces a groundbreaking model, YOLOv8-ApexNet, which integrates advanced technologies, including Bidirectional Routing Attention (BRA) and Generalized Feature Pyramid Network (GFPN). BRA facilitates the capture of inter-keypoint correlations within dynamic environments by introducing a bidirectional information propagation mechanism. Furthermore, GFPN adeptly extracts and integrates feature information across different scales, enabling the model to make more precise predictions for targets of various sizes and shapes.
Empirical research findings reveal significant performance enhancements of the YOLOv8-ApexNet model across the COCO and MPII datasets. Compared to existing methodologies, the model demonstrates pronounced advantages in keypoint localization accuracy and robustness.
The significance of this research lies in providing an efficient and accurate solution tailored for the realm of service robotics, effectively mitigating the deficiencies inherent in current approaches. By bolstering the accuracy of perception and decision-making, our endeavors unequivocally endorse the widespread integration of service robots within practical applications.
服务机器人技术在人工智能领域正日益凸显其重要性。然而,持续存在的局限性仍阻碍着其广泛应用。在这方面,人体运动姿态估计成为提升服务机器人感知和决策能力所需面对的一项关键挑战。
本文介绍了一种开创性的模型YOLOv8-ApexNet,它集成了包括双向路由注意力(BRA)和通用特征金字塔网络(GFPN)在内的先进技术。BRA通过引入双向信息传播机制,有助于在动态环境中捕捉关键点之间的相关性。此外,GFPN能够巧妙地跨不同尺度提取和整合特征信息,使模型能够对各种大小和形状的目标做出更精确的预测。
实证研究结果表明,YOLOv8-ApexNet模型在COCO和MPII数据集上有显著的性能提升。与现有方法相比,该模型在关键点定位准确性和鲁棒性方面展现出明显优势。
本研究的意义在于为服务机器人领域提供了一种高效且准确的解决方案,有效缓解了当前方法中固有的缺陷。通过提高感知和决策的准确性,我们的努力明确支持服务机器人在实际应用中的广泛集成。