Zabala-Lekuona Andoni, Lopez de Pariza Xabier, Díaz-Ortega Ismael F, Cepeda Javier, Nojiri Hiroyuki, Gritsan Nina P, Dmitriev Alexey A, López-Ortega Alberto, Rodríguez-Diéguez Antonio, Seco José M, Colacio Enrique
Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 Donostia-San Sebastián, Spain.
POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain.
Dalton Trans. 2024 May 7;53(18):7971-7984. doi: 10.1039/d4dt00148f.
We have prepared a bis(compartmental) Mannich base ligand HL (1,4,8,11-tetraaza-1,4,8,11-tetrakis(2-hydroxy-3-methoxy-5-methylbenzyl)cyclotetradecane) specifically designed to obtain bis(TMLn) tetranuclear complexes (TM = transition metal). In this regard, we have succeeded in obtaining three new complexes of the formula [Zn(μ-L)(μ-OAc)Dy(NO)]·[Zn(μ-L)(μ-OAc)Dy(NO)(OAc)]·4CHCl·2MeOH (1) and [TM(μ-HL)(μ-succinate)Ln(NO)] (NO)·2HO·6MeOH (TM = Zn, Ln = Dy (2); TM = Co, Ln = Dy (3)). Compound 1 contains two different bis(ZnDy) tetranuclear molecules that cocrystallize in the structure, in which acetato bridging ligands connect the Zn and Dy ions within each ZnDy subunit. This compound does not exhibit slow magnetic relaxation at zero field, but it is activated in the presence of an applied dc magnetic field and/or by Dy/Y magnetic dilution, showing two relaxation processes corresponding to each of the two different bis(ZnDy) units found in the structure. As revealed by the theoretical calculations, magnetic relaxation in 1 is single-ion in origin and takes place through the first excited state of each Dy ion. When using the succinato dicarboxylate bridging ligand instead of acetate, compounds 2 and 3 were serendipitously formed, which have a closed structure with the succinate anion bridging two ZnDy subunits belonging to two different ligands. It should be noted that only compound 2 exhibits slow relaxation of magnetization in the absence of an external magnetic field. According to experimental and theoretical data, 2 relaxes through the second excited Kramers doublet ( = 342 K). In contrast, 3 displays field-induced SMM behaviour ( = 203 K). However, the Co/Zn diluted version of this compound 3Zn shows slow relaxation at zero field ( = 347 K). theoretical calculations clearly show that the weak ferromagnetic coupling between Co and Dy ions is at the origin of the lack of slow relaxation of this compound at zero field. Compound 2 and its diluted analogues 2Y and 3Zn show hysteresis loops at very low temperature, thus confirming their SMM behaviour. Finally, compounds 1 and 2 show Dy based emission even at room temperature that, in the case of 2, allows us to extract the splitting of the ground H term, which matches reasonably well with theoretical calculations.
我们制备了一种双(隔室)曼尼希碱配体HL(1,4,8,11-四氮杂-1,4,8,11-四(2-羟基-3-甲氧基-5-甲基苄基)环十四烷),专门设计用于获得双(TMLn)四核配合物(TM = 过渡金属)。在这方面,我们成功获得了三种新的配合物,其化学式为[Zn(μ-L)(μ-OAc)Dy(NO)]·[Zn(μ-L)(μ-OAc)Dy(NO)(OAc)]·4CHCl·2MeOH(1)和[TM(μ-HL)(μ-琥珀酸)Ln(NO)] (NO)·2HO·6MeOH(TM = Zn,Ln = Dy(2);TM = Co,Ln = Dy(3))。化合物1包含两种不同的双(ZnDy)四核分子,它们在结构中共结晶,其中乙酸根桥联配体在每个ZnDy亚基内连接Zn和Dy离子。该化合物在零场下不表现出慢磁弛豫,但在施加直流磁场和/或通过Dy/Y磁稀释时被激活,显示出与结构中发现的两种不同双(ZnDy)单元相对应的两个弛豫过程。理论计算表明,1中的磁弛豫源于单离子,通过每个Dy离子的第一激发态发生。当使用琥珀酸二羧酸盐桥联配体代替乙酸盐时,意外地形成了化合物2和3,它们具有封闭结构,琥珀酸根阴离子桥联属于两个不同配体的两个ZnDy亚基。应该注意的是,只有化合物2在没有外部磁场的情况下表现出磁化的慢弛豫。根据实验和理论数据,2通过第二激发的克莱默斯二重态( = 342 K)弛豫。相比之下,3表现出场诱导的单分子磁体行为( = 203 K)。然而,该化合物3Zn的Co/Zn稀释版本在零场下显示出慢弛豫( = 347 K)。理论计算清楚地表明,Co和Dy离子之间的弱铁磁耦合是该化合物在零场下缺乏慢弛豫的原因。化合物2及其稀释类似物2Y和3Zn在非常低的温度下显示出滞后回线,从而证实了它们的单分子磁体行为。最后,化合物1和2即使在室温下也显示出基于Dy的发射,就化合物2而言,这使我们能够提取基态H项的分裂,其与理论计算相当吻合。