Suppr超能文献

基于深度学习的 CT 血管造影影像组学预测急性非复杂性 Stanford B 型主动脉夹层初始血管内修复术后不良事件。

Deep learning-based radiomics of computed tomography angiography to predict adverse events after initial endovascular repair for acute uncomplicated Stanford type B aortic dissection.

机构信息

Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China.

Shukun Technology Co., Ltd, Beichen Century Center, West Beichen Road, 100102 Beijing, China.

出版信息

Eur J Radiol. 2024 Jun;175:111468. doi: 10.1016/j.ejrad.2024.111468. Epub 2024 Apr 15.

Abstract

PURPOSE

This study aimed to construct a predictive model integrating deep learning-derived radiomic features from computed tomography angiography (CTA) and clinical biomarkers to forecast postoperative adverse events (AEs) in patients with acute uncomplicated Stanford type B aortic dissection (uTBAD) undergoing initial thoracic endovascular aortic repair (TEVAR).

METHODS

We retrospectively evaluated 369 patients treated with TEVAR for acute uTBAD from January 2015 to December 2022. A three-dimensional (3D) deep convolutional neural network (CNN) automated radiomic feature extraction from CTA images. Feature selection, using Analysis of Variance (ANOVA) and the Least Absolute Shrinkage and Selection Operator (LASSO) algorithms, refined a radiomic score (Rad-Score). This score, alongside clinical parameters, was modelled via Extreme Gradient Boosting (XGBoost) analysis. Model calibration was assessed by calibration curves.

RESULTS

The integration of the Rad-Score with clinical factors including albumin and C-reactive protein levels moderately enhanced predictive efficiency, exhibiting an area under the curve (AUC) of 1.000 (95%CI, 1.000-1.000) in the training cohort and 0.990 (95%CI, 0.966-1.000) in the internal validation cohort. In an independent validation cohort from another hospital, the combined model yielded an AUC of 0.985 (95%CI, 0.965-1.000), with an accuracy, precision, sensitivity, and specificity of 0.92, 0.92, 0.94, and 0.91, respectively.

CONCLUSIONS

The synergistic application of deep learning-based radiomics from CTA and clinical indicators holds promise for anticipating AEs post-initial thoracic endovascular aortic repair in patients with acute uTBAD. The clinical utility of the constructed combined model, offering prognostic foresight during follow-up, has been substantiated.

摘要

目的

本研究旨在构建一个整合深度学习从 CT 血管造影(CTA)和临床生物标志物中提取的放射组学特征的预测模型,以预测接受初始胸主动脉腔内修复术(TEVAR)治疗的急性非复杂性 Stanford 型 B 型主动脉夹层(uTBAD)患者的术后不良事件(AE)。

方法

我们回顾性评估了 2015 年 1 月至 2022 年 12 月期间接受 TEVAR 治疗的 369 例急性 uTBAD 患者。使用三维(3D)深度卷积神经网络(CNN)从 CTA 图像中自动提取放射组学特征。使用方差分析(ANOVA)和最小绝对收缩和选择算子(LASSO)算法进行特征选择,得到放射组学评分(Rad-Score)。使用极端梯度提升(XGBoost)分析对该评分以及临床参数进行建模。通过校准曲线评估模型校准。

结果

Rad-Score 与包括白蛋白和 C 反应蛋白水平在内的临床因素相结合,适度提高了预测效率,在训练队列中的曲线下面积(AUC)为 1.000(95%CI,1.000-1.000),在内部验证队列中的 AUC 为 0.990(95%CI,0.966-1.000)。在来自另一所医院的独立验证队列中,联合模型的 AUC 为 0.985(95%CI,0.965-1.000),其准确性、精确性、敏感性和特异性分别为 0.92、0.92、0.94 和 0.91。

结论

基于深度学习的 CTA 放射组学与临床指标的协同应用有望预测急性 uTBAD 患者接受初始 TEVAR 后的 AE。已证实所构建的联合模型的临床实用性,可为随访期间提供预后预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验