Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands.
Chemphyschem. 2024 Aug 19;25(16):e202400162. doi: 10.1002/cphc.202400162. Epub 2024 Jul 17.
Voltage-gated ion channels are transmembrane proteins responsible for the generation and propagation of action potentials in excitable cells. Over the last decade, advancements have enabled the elucidation of crystal structures of ion channels. This progress in structural understanding, particularly in identifying the binding sites of local anesthetics, opens avenues for the design of novel compounds capable of modulating ion conduction. However, many traditional drugs lack selectivity and come with adverse side effects. The emergence of photopharmacology has provided an orthogonal way of controlling the activity of compounds, enabling the regulation of ion conduction with light. In this review, we explore the central pore region of voltage-gated sodium and potassium channels, providing insights from both structural and pharmacological perspectives. We discuss the different binding modes of synthetic compounds that can physically occlude the pore and, therefore, block ion conduction. Moreover, we examine recent advances in the photopharmacology of voltage-gated ion channels, introducing molecular approaches aimed at controlling their activity by using photosensitive drugs.
电压门控离子通道是跨膜蛋白,负责可兴奋细胞中动作电位的产生和传播。在过去的十年中,技术的进步使离子通道的晶体结构得以阐明。这一结构理解方面的进展,特别是在确定局部麻醉剂的结合位点方面,为设计能够调节离子传导的新型化合物开辟了道路。然而,许多传统药物缺乏选择性,并且伴随着不良反应。光药理学的出现提供了一种控制化合物活性的正交方法,能够用光来调节离子传导。在这篇综述中,我们从结构和药理学的角度探讨了电压门控钠离子和钾离子通道的中央孔区。我们讨论了可以物理阻塞孔并因此阻断离子传导的合成化合物的不同结合模式。此外,我们还研究了电压门控离子通道光药理学的最新进展,介绍了通过使用光敏药物来控制其活性的分子方法。