Ibele Lea M, Agostini Federica
Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France.
J Phys Chem A. 2024 May 9;128(18):3672-3684. doi: 10.1021/acs.jpca.4c00555. Epub 2024 Apr 25.
We study low-energy dynamics generated by a two-dimensional two-state Jahn-Teller Hamiltonian in the vicinity of a conical intersection using quantum wave packet and trajectory dynamics. Recently, these dynamics were studied by comparing the adiabatic representation and the exact factorization, with the purpose to highlight the different nature of topological-phase and geometric-phase effects arising in the two theoretical representations of the same problem. Here, we employ the exact factorization to understand how to accurately model low-energy dynamics in the vicinity of a conical intersection using an approximate description of the nuclear motion that uses trajectories. We find that since nonadiabatic effects are weak but non-negligible, the trajectory-based description that invokes the classical approximation struggles to capture the correct behavior.
我们使用量子波包和轨迹动力学方法研究了二维双态 Jahn-Teller 哈密顿量在锥形交叉点附近产生的低能动力学。最近,通过比较绝热表示和精确因子分解对这些动力学进行了研究,目的是突出在同一问题的两种理论表示中出现的拓扑相和几何相效应的不同性质。在这里,我们采用精确因子分解来理解如何使用基于轨迹的核运动近似描述来准确模拟锥形交叉点附近的低能动力学。我们发现,由于非绝热效应较弱但不可忽略,基于轨迹的描述(采用经典近似)难以捕捉正确的行为。