Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, ROC; Department of Materials and Metallurgical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia.
Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, ROC.
Chemosphere. 2024 Jun;357:142116. doi: 10.1016/j.chemosphere.2024.142116. Epub 2024 Apr 23.
This study explores the utilization of semiconductor-based photocatalysts for environmental remediation through photocatalytic degradation, harnessing solar energy for effective treatment. The primary focus is on the application of photocatalytic technology for the degradation of 2-chlorophenol and methylene blue, critical pollutants requiring remediation. The research involves the synthesis of binary AgAlO/g-CN nanocomposites through an exchange ion method, subsequent calcination, and sonication. This process enhances the transfer of photogenerated electrons from AgAlO to g-CN, resulting in a significantly increased reductive electron charge on the surface of g-CN. The photocatalytic activity of the synthesized composites is comprehensively examined in the degradation of 2-chlorophenol and methylene blue through detailed crystallographic, electron-microscopy, photoemission spectroscopy, electrochemical, and spectroscopic characterizations. Among the various composites, AgAlO/20% g-CN emerges as the most active photocatalyst, achieving an impressive 98% degradation of methylene blue and 97% degradation of 2-chlorophenol under visible light. Notably, AgAlO/20% g-CN surpasses bare AgAlO and bare g-CN, exhibiting 1.66 times greater methylene blue degradation and constant rate (k) values of 20.17 × 10 min, 4.18 × 10 min and 3.48 × 10 min, respectively. The heightened photocatalytic activity is attributed to the diminished recombination rate of electron-hole pairs. Scavenging evaluations confirm that O and h are the primary photoactive species steering methylene blue photodegradation over AgAlO/g-CN in the visible region. These findings present new possibilities for the development of efficient binary photocatalysts for environmental remediation.
本研究通过光催化降解,利用太阳能进行有效处理,探索基于半导体的光催化剂在环境修复中的应用。主要重点是将光催化技术应用于 2-氯苯酚和亚甲基蓝的降解,这是需要修复的关键污染物。该研究涉及通过离子交换法、随后的煅烧和超声处理合成二元 AgAlO/g-CN 纳米复合材料。该过程增强了 AgAlO 中的光生电子向 g-CN 的转移,导致 g-CN 表面的还原电子电荷显著增加。通过详细的晶体学、电子显微镜、光发射光谱、电化学和光谱特性,全面研究了合成复合材料在 2-氯苯酚和亚甲基蓝降解中的光催化活性。在各种复合材料中,AgAlO/20% g-CN 是最活跃的光催化剂,在可见光下实现了亚甲基蓝 98%的降解和 2-氯苯酚 97%的降解。值得注意的是,AgAlO/20% g-CN 优于裸 AgAlO 和裸 g-CN,分别表现出 1.66 倍更高的亚甲基蓝降解和恒定速率(k)值,分别为 20.17×10 min、4.18×10 min 和 3.48×10 min。高的光催化活性归因于电子-空穴对复合率的降低。清除评价证实,O 和 h 是在可见光区驱动 AgAlO/g-CN 上亚甲基蓝光降解的主要光活性物质。这些发现为开发用于环境修复的高效二元光催化剂提供了新的可能性。