Suppr超能文献

使用多变量评分系统预测卵胞浆内单精子注射周期的生殖结局

Prediction of Reproductive Outcomes of Intracytoplasmic Sperm Injection Cycles Using a Multivariate Scoring System.

作者信息

Abden Ahmed Abuelsoud, Kamel Momen Ahmed, Fetih Ahmed Nabil, Yousef Ali Haroun

机构信息

Department of Obstetrics and Gynecology, Faculty of Medicine, Assiut University, Asyut, Egypt.

出版信息

J Hum Reprod Sci. 2024 Jan-Mar;17(1):33-41. doi: 10.4103/jhrs.jhrs_4_24. Epub 2024 Mar 28.

Abstract

BACKGROUND

Prediction of fertilisation (IVF)/intracytoplasmic sperm injection (ICSI) success is crucial in counselling patients about their real chance of getting a live birth before commencing treatment. A multivariate scoring system proposed by Younis ., 2010, was amongst the predictive models used to evaluate IVF/ICSI success. The score entitles basal endocrine, clinical and sonographic parameters.

AIMS

The objective of this study is to assess the predictability of the Younis multivariate score for pregnancy outcomes in ICSI cycles.

SETTINGS AND DESIGN

This prospective observational cohort study (NCT03846388) included patients who pursued IVF or ICSI in a tertiary infertility unit between February 2019 and December 2021.

MATERIALS AND METHODS

The score variables were age, body mass index, antral follicle count, basal follicle-stimulating hormone (FSH), basal FSH/luteinising hormone ratio, infertility duration, number of previous cancellations and mean ovarian volume. For each woman included in the study, Younis multivariate score was calculated. Then, we correlate the different reproductive outcomes with score levels to validate the score predictability. A score of ≤14 was defined as a low score based on the previous study's results.

STATISTICAL ANALYSIS USED

The student's -test and Mann-Whitney test were used to compare numerical variables, whereas categorical variables were analysed using the Chi-square test. A receiver operating curve (ROC) and a multivariate logistic regression model were used to investigate the predictability of the Younis scoring model for cycle outcomes.

RESULTS

Two hundred ninety-two ICSI-ET cycles were analysed. Of the total cohort, 143 (48.97%) women included showed a low score (≤14), whereas 149 (51.03%) women showed a high score (>14). Women with low scores had significantly higher pregnancy and live birth rates compared to women with high scores (60.1% vs. 7.4%, respectively, < 0.001; 44.7% vs. 6.7%, respectively, < 0.001). The area under the curve (AUC) in the ROC curve analysis showed a higher predictability for the scoring system for live birth rate with an AUC of 0.796, with a sensitivity of 86.5% and specificity of 63.8% when using a cut-off level of ≤14. For pregnancy prediction, the AUC was 0.829, with a sensitivity of 88.66% and a specificity of 70.77% when using the same cut-off. Women who have a low score have a high chance of having frozen embryos. Likewise, women who have a high score have a very high chance of cycle cancellation.

CONCLUSIONS

The Younis multivariate score can be used for the prediction of ICSI cycle outcomes and to calculate the chance of cycle cancellation, pregnancy and take-home baby before ICSI.

摘要

背景

在开始治疗前为患者提供关于实现活产的真实几率的咨询时,预测体外受精(IVF)/卵胞浆内单精子注射(ICSI)的成功率至关重要。尤尼斯等人在2010年提出的多变量评分系统是用于评估IVF/ICSI成功率的预测模型之一。该评分纳入了基础内分泌、临床和超声参数。

目的

本研究的目的是评估尤尼斯多变量评分对ICSI周期妊娠结局的预测能力。

设置与设计

这项前瞻性观察队列研究(NCT03846388)纳入了2019年2月至2021年12月期间在一家三级不孕不育治疗中心接受IVF或ICSI治疗的患者。

材料与方法

评分变量包括年龄、体重指数、窦卵泡计数、基础卵泡刺激素(FSH)、基础FSH/促黄体生成素比值、不孕持续时间、既往取消治疗的次数以及平均卵巢体积。对于纳入本研究的每位女性,计算尤尼斯多变量评分。然后,我们将不同的生殖结局与评分水平进行关联,以验证评分的预测能力。根据先前研究结果,将≤14分定义为低分。

所用统计分析方法

采用学生t检验和曼-惠特尼检验比较数值变量,而分类变量则使用卡方检验进行分析。采用受试者工作特征曲线(ROC)和多变量逻辑回归模型来研究尤尼斯评分模型对周期结局的预测能力。

结果

分析了292个ICSI-ET周期。在整个队列中,143名(48.97%)女性的评分为低分(≤14),而149名(51.03%)女性的评分为高分(>14)。低分女性的妊娠率和活产率显著高于高分女性(分别为60.1%对7.4%;P< 0.001;分别为44.7%对6.7%;P< 0.001)。ROC曲线分析中的曲线下面积(AUC)显示,该评分系统对活产率具有较高的预测能力,AUC为0.796,当使用≤14的临界值时,敏感性为86.5%,特异性为63.8%用于妊娠预测时,AUC为0.829,使用相同临界值时,敏感性为88.66%,特异性为70.77%。评分低的女性有很高的几率有冷冻胚胎。同样,评分高的女性有很高的几率取消周期。

结论

尤尼斯多变量评分可用于预测ICSI周期结局,并在ICSI前计算取消周期、妊娠和抱婴回家的几率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/567d/11041322/3f0aea0b0094/JHRS-17-33-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验