Suppr超能文献

利用基于大语言模型的人工智能提取的数据观察加拿大晚期表皮生长因子受体突变型非小细胞肺癌患者的真实世界结局。

Real-World Outcomes of Patients with Advanced Epidermal Growth Factor Receptor-Mutated Non-Small Cell Lung Cancer in Canada Using Data Extracted by Large Language Model-Based Artificial Intelligence.

机构信息

Pentavere, 460 College Street, Toronto, ON M6G 1A1, Canada.

Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada.

出版信息

Curr Oncol. 2024 Apr 2;31(4):1947-1960. doi: 10.3390/curroncol31040146.

Abstract

Real-world evidence for patients with advanced -mutated non-small cell lung cancer (NSCLC) in Canada is limited. This study's objective was to use previously validated DARWEN artificial intelligence (AI) to extract data from electronic heath records of patients with non-squamous NSCLC at University Health Network (UHN) to describe mutation prevalence, treatment patterns, and outcomes. Of 2154 patients with NSCLC, 613 had advanced disease. Of these, 136 (22%) had common sensitizing mutations (cm; ex19del, L858R), 8 (1%) had exon 20 insertions (ex20ins), and 338 (55%) had wild type. One-year overall survival (OS) (95% CI) for patients with cm, ex20ins, and wild type tumours was 88% (83, 94), 100% (100, 100), and 59% (53, 65), respectively. In total, 38% patients with ex20ins received experimental ex20ins targeting treatment as their first-line therapy. A total of 57 patients (36%) with cm received osimertinib as their first-line treatment, and 61 (39%) received it as their second-line treatment. One-year OS (95% CI) following the discontinuation of osimertinib was 35% (17, 75) post-first-line and 20% (9, 44) post-second-line. In this real-world AI-generated dataset, survival post-osimertinib was poor in patients with c mutations. Patients with ex20ins in this cohort had improved outcomes, possibly due to ex20ins targeting treatment, highlighting the need for more effective treatments for patients with advanced m NSCLC.

摘要

加拿大针对晚期 - 突变型非小细胞肺癌(NSCLC)患者的真实世界证据有限。本研究的目的是使用先前经过验证的 DARWEN 人工智能(AI)从多伦多大学健康网络(UHN)的非鳞状 NSCLC 患者的电子健康记录中提取数据,以描述 突变的流行率、治疗模式和结局。在 2154 名 NSCLC 患者中,613 名患有晚期疾病。其中,136 名(22%)有常见的敏感突变(cm;ex19del、L858R),8 名(1%)有外显子 20 插入(ex20ins),338 名(55%)为野生型。cm、ex20ins 和 野生型肿瘤患者的一年总生存(OS)(95%CI)分别为 88%(83,94)、100%(100,100)和 59%(53,65)。共有 38%的 ex20ins 患者接受了实验性的 ex20ins 靶向治疗作为一线治疗。共有 57 名(36%)cm 患者接受奥希替尼作为一线治疗,61 名(39%)患者接受奥希替尼作为二线治疗。奥希替尼停药后的一年 OS(95%CI),一线治疗后为 35%(17,75),二线治疗后为 20%(9,44)。在这个真实世界的 AI 生成数据集中,c 突变患者在停用奥希替尼后的生存情况较差。本队列中 ex20ins 患者的结局有所改善,可能是由于接受了针对 ex20ins 的治疗,这突显了为晚期 m NSCLC 患者提供更有效治疗方法的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验