Wu Pei-Jun, Huang Chia-Hung, Hsieh Chien-Te, Liu Wei-Ren
Department of Chemical Engineering, R&D Center for Membrane Technology, Center for Circular Economy, Chung Yuan Christian University, 200 Chung Pei Road, Chungli District, Taoyuan City 320, Taiwan.
Department of Electrical Engineering, National University of Tainan, No. 33, Sec. 2, Shulin St., West Central District, Tainan City 700, Taiwan.
Nanomaterials (Basel). 2024 Apr 19;14(8):716. doi: 10.3390/nano14080716.
In this study, we synthesized a transition metal sulfide (TMS) with a spinel structure, i.e., MnInS (MIS), using a two-step hydrothermal and sintering process. In the context of lithium-ion battery (LIB) applications, ternary TMSs are being considered as interesting options for anode materials. This consideration arises from their notable attributes, including high theoretical capacity, excellent cycle stability, and cost-effectiveness. However, dramatic volume changes result in the electrochemical performance being severely limited, so we introduced single-walled carbon nanotubes (SWCNTs) and prepared an MIS/SWCNT composite to enhance the structural stability and electronic conductivity. The synthesized MIS/SWCNT composite exhibits better cycle performance than bare MIS. Undergoing 100 cycles, MIS only yields a reversible capacity of 117 mAh/g at 0.1 A/g. However, the MIS/SWCNT composite exhibits a reversible capacity as high as 536 mAh/g after 100 cycles. Moreover, the MIS/SWCNT composite shows a better rate capability. The current density increases with cycling, and the SWCNT composite exhibits high reversible capacities of 232 and 102 mAh/g at 2 A/g and 5 A/g, respectively. Under the same conditions, pristine MIS can only deliver reversible capacities of 21 and 4 mAh/g. The results indicate that MIS/SWCNT composites are promising anode materials for LIBs.
在本研究中,我们采用两步水热法和烧结工艺合成了具有尖晶石结构的过渡金属硫化物(TMS),即MnInS(MIS)。在锂离子电池(LIB)应用的背景下,三元TMS被认为是阳极材料的有趣选择。这种考虑源于它们显著的特性,包括高理论容量、优异的循环稳定性和成本效益。然而,剧烈的体积变化导致其电化学性能受到严重限制,因此我们引入了单壁碳纳米管(SWCNT)并制备了MIS/SWCNT复合材料,以增强结构稳定性和电子导电性。合成的MIS/SWCNT复合材料表现出比纯MIS更好的循环性能。在0.1 A/g下进行100次循环后,MIS的可逆容量仅为117 mAh/g。然而,MIS/SWCNT复合材料在100次循环后表现出高达536 mAh/g的可逆容量。此外,MIS/SWCNT复合材料显示出更好的倍率性能。随着循环,电流密度增加,SWCNT复合材料在2 A/g和5 A/g时分别表现出232和102 mAh/g的高可逆容量。在相同条件下,原始MIS只能提供21和4 mAh/g的可逆容量。结果表明,MIS/SWCNT复合材料是有前途的LIB阳极材料。