Suppr超能文献

单铱原子催化剂上的超低电位甲醇氧化

Ultra-Low-Potential Methanol Oxidation on Single-Ir-Atom Catalyst.

作者信息

Gong Liyuan, Zhu Xiaorong, Nga Ta Thi Thuy, Liu Qie, Wu Yujie, Yang Pupu, Zhou Yangyang, Xiao Zhaohui, Dong Chung-Li, Fu Xianzhu, Tao Li, Wang Shuangyin

机构信息

State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China.

College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China.

出版信息

Angew Chem Int Ed Engl. 2024 Jul 8;63(28):e202404713. doi: 10.1002/anie.202404713. Epub 2024 Jun 3.

Abstract

Methanol oxidation plays a central role to implement sustainable energy economy, which is restricted by the sluggish reaction kinetics due to the multi-electron transfer process accompanied by numerous sequential intermediate. In this study, an efficient cascade methanol oxidation reaction is catalyzed by single-Ir-atom catalyst at ultra-low potential (<0.1 V) with the promotion of the thermal and electrochemical integration in a high temperature polymer electrolyte membrane electrolyzer. At the elevated temperature, the electron deficient Ir site with higher methanol affinity could spontaneous catalyze the CHOH dehydrogenation to CO under the voltage, then the generated CO and H was electrochemically oxidized to CO and proton. However, the methanol cannot thermally decompose with the voltage absence, which confirm the indispensable of the coupling of thermal and electrochemical integration for the methanol oxidation. By assembling the methanol oxidation reaction with hydrogen evolution reaction with single-Ir-atom catalysts in the anode chamber, a max hydrogen production rate reaches 18 mol g  h, which is much greater than that of Ir nanoparticles and commercial Pt/C. This study also demonstrated the electrochemical methanol oxidation activity of the single atom catalysts, which broadens the renewable energy devices and the catalyst design by an integration concept.

摘要

甲醇氧化在实现可持续能源经济中起着核心作用,由于多电子转移过程伴随着众多连续中间体,其反应动力学迟缓,限制了该过程。在本研究中,在高温聚合物电解质膜电解槽中,通过热和电化学集成的促进,单铱原子催化剂在超低电位(<0.1 V)下催化了高效的级联甲醇氧化反应。在升高的温度下,具有较高甲醇亲和力的缺电子铱位点可在电压作用下自发催化甲醇脱氢生成一氧化碳,然后生成的一氧化碳和氢气被电化学氧化为二氧化碳和质子。然而,在无电压时甲醇不能热分解,这证实了热和电化学集成耦合对于甲醇氧化是不可或缺的。通过在阳极室中将甲醇氧化反应与单铱原子催化剂的析氢反应组装在一起,最大产氢速率达到18 mol g⁻¹ h⁻¹,远高于铱纳米颗粒和商业铂碳催化剂。本研究还展示了单原子催化剂的电化学甲醇氧化活性,通过集成概念拓宽了可再生能源装置和催化剂设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验