Makarov Mark, Papa Michele, Korkotian Eduard
Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
Int J Mol Sci. 2024 Apr 11;25(8):4235. doi: 10.3390/ijms25084235.
Dendritic structures play a pivotal role in the computational processes occurring within neurons. Signal propagation along dendrites relies on both passive conduction and active processes related to voltage-dependent ion channels. Among these channels, extrasynaptic N-methyl-D-aspartate channels (exNMDA) emerge as a significant contributor. Prior studies have mainly concentrated on interactions between synapses and nearby exNMDA (100 nm-10 µm from synapse), activated by presynaptic membrane glutamate. This study concentrates on the correlation between synaptic inputs and distal exNMDA (>100 µm), organized in clusters that function as signal amplifiers. Employing a computational model of a dendrite, we elucidate the mechanism underlying signal amplification in exNMDA clusters. Our findings underscore the pivotal role of the optimal spatial positioning of the NMDA cluster in determining signal amplification efficiency. Additionally, we demonstrate that exNMDA subunits characterized by a large conduction decay constant. Specifically, NR2B subunits exhibit enhanced effectiveness in signal amplification compared to subunits with steeper conduction decay. This investigation extends our understanding of dendritic computational processes by emphasizing the significance of distant exNMDA clusters as potent signal amplifiers. The implications of our computational model shed light on the spatial considerations and subunit characteristics that govern the efficiency of signal amplification in dendritic structures, offering valuable insights for future studies in neurobiology and computational neuroscience.
树突状结构在神经元内发生的计算过程中起着关键作用。信号沿树突的传播依赖于被动传导和与电压依赖性离子通道相关的主动过程。在这些通道中,突触外N-甲基-D-天冬氨酸通道(exNMDA)是一个重要的贡献者。先前的研究主要集中在突触与附近exNMDA(距突触100纳米至10微米)之间的相互作用,这些exNMDA由突触前膜谷氨酸激活。本研究集中于突触输入与远端exNMDA(>100微米)之间的相关性,远端exNMDA聚集成簇,起到信号放大器的作用。我们利用一个树突的计算模型,阐明了exNMDA簇中信号放大的潜在机制。我们的研究结果强调了NMDA簇的最佳空间定位在决定信号放大效率方面的关键作用。此外,我们证明exNMDA亚基具有较大的传导衰减常数。具体而言,与具有更陡峭传导衰减的亚基相比,NR2B亚基在信号放大方面表现出更高的有效性。这项研究通过强调远端exNMDA簇作为强大信号放大器的重要性,扩展了我们对树突计算过程的理解。我们的计算模型的意义揭示了控制树突状结构中信号放大效率的空间因素和亚基特征,为神经生物学和计算神经科学的未来研究提供了有价值的见解。