Suppr超能文献

Notch和分子量对聚碳酸酯冲击断裂行为的影响

The Effect of Notch and Molecular Weight on the Impact Fracture Behavior of Polycarbonate.

作者信息

Xu Xueting, Wang Tao, Sun Qiwei, Wang Bolun, Ge Yong, Lang Jianlin, Yan Yue

机构信息

Beijing Institute of Aeronautical Materials, Beijing 100095, China.

Beijing Engineering Research Center of Advanced Structural Transparence for the Modern Traffic System, Beijing 100095, China.

出版信息

Polymers (Basel). 2024 Apr 11;16(8):1072. doi: 10.3390/polym16081072.

Abstract

The impact protection applications of polycarbonate (PC) products are gradually increasing. Due to the high sensitivity of PC to notches, research on notch impacts has become very important. In this paper, the impact performance of PC with two different molecular weights under different notch states was investigated. Three notch size factors, namely notch tip radius, notch angle, and notch center depth, were selected to design orthogonal experiments and research impact toughness. Subsequently, a single-factor study was conducted on the impact radius at the tip of the notch, which was the most important factor affecting the impact performance. Research shows that the brittle-ductile-transition tip radius of high-molecular-weight PC is 0.15 mm, and it has a higher impact toughness than low-molecular-weight PC during the brittle fracture process. The brittle-ductile-transition tip radius of lower molecular weight is 0.25 mm, while low-molecular-weight PC has a higher impact toughness during the ductile fracture process. The brittle and ductile fracture mechanisms of PC with different molecular weights were analyzed by observing the stress changes and cross-sectional morphology.

摘要

聚碳酸酯(PC)产品的抗冲击保护应用正在逐渐增加。由于PC对缺口高度敏感,因此对缺口冲击的研究变得非常重要。本文研究了两种不同分子量的PC在不同缺口状态下的冲击性能。选择了三个缺口尺寸因素,即缺口尖端半径、缺口角度和缺口中心深度,设计正交实验并研究冲击韧性。随后,对缺口尖端的冲击半径进行了单因素研究,该因素是影响冲击性能的最重要因素。研究表明,高分子量PC的脆韧转变尖端半径为0.15mm,在脆性断裂过程中其冲击韧性高于低分子量PC。低分子量的脆韧转变尖端半径为0.25mm,而低分子量PC在韧性断裂过程中具有较高的冲击韧性。通过观察应力变化和横截面形态,分析了不同分子量PC的脆性和韧性断裂机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/016e/11054895/49712ac47701/polymers-16-01072-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验