Suppr超能文献

第二配体精氨酸残基在腈水合酶中金属结合和金属中心组装中的作用。

Role of second-sphere arginine residues in metal binding and metallocentre assembly in nitrile hydratases.

机构信息

Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO 80401, USA.

Department of Chemistry, Marquette University, Milwaukee, WI 53233, USA.

出版信息

J Inorg Biochem. 2024 Jul;256:112565. doi: 10.1016/j.jinorgbio.2024.112565. Epub 2024 Apr 16.

Abstract

Two conserved second-sphere βArg (R) residues in nitrile hydratases (NHase), that form hydrogen bonds with the catalytically essential sulfenic and sulfinic acid ligands, were mutated to Lys and Ala residues in the Co-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) and the Fe-type NHase from Rhodococcus equi TG328-2 (ReNHase). Only five of the eight mutants (PtNHase βR52A, βR52K, βR157A, βR157K and ReNHase βR61A) were successfully expressed and purified. Apart from the PtNHase βR52A mutant that exhibited no detectable activity, the k values obtained for the PtNHase and ReNHase βR mutant enzymes were between 1.8 and 12.4 s amounting to <1% of the k values observed for WT enzymes. The metal content of each mutant was also significantly decreased with occupancies ranging from ∼10 to ∼40%. UV-Vis spectra coupled with EPR data obtained on the ReNHase mutant enzyme, suggest a decrease in the Lewis acidity of the active site metal ion. X-ray crystal structures of the four PtNHase βR mutant enzymes confirmed the mutation and the low active site metal content, while also providing insight into the active site hydrogen bonding network. Finally, DFT calculations suggest that the equatorial sulfenic acid ligand, which has been shown to be the catalytic nucleophile, is protonated in the mutant enzyme. Taken together, these data confirm the necessity of the conserved second-sphere βR residues in the proposed subunit swapping process and post-translational modification of the α-subunit in the α activator complex, along with stabilizing the catalytic sulfenic acid in its anionic form.

摘要

两个保守的第二配位层βArg(R)残基存在于腈水合酶(NHase)中,与催化必需的亚磺酰和磺基酸配体形成氢键,在嗜热假诺卡氏菌 JCM 3095 的 Co 型 NHase(PtNHase)和马红球菌 TG328-2 的 Fe 型 NHase(ReNHase)中,βArg 残基被突变为赖氨酸和丙氨酸残基。只有 8 个突变体中的 5 个(PtNHase βR52A、βR52K、βR157A、βR157K 和 ReNHase βR61A)成功表达和纯化。除了 PtNHase βR52A 突变体没有检测到活性外,PtNHase 和 ReNHase βR 突变酶的 k 值在 1.8 和 12.4 s 之间,仅为 WT 酶的 k 值的<1%。每个突变体的金属含量也显著降低,占有率从 ∼10 到 ∼40%不等。对 ReNHase 突变酶的紫外-可见光谱结合 EPR 数据表明,活性位点金属离子的路易斯酸度降低。X 射线晶体结构的四个 PtNHase βR 突变酶证实了突变和低活性位点金属含量,同时也提供了对活性位点氢键网络的深入了解。最后,DFT 计算表明,已被证明是催化亲核试剂的赤道亚磺酰酸配体在突变酶中质子化。总之,这些数据证实了保守的第二配位层βR 残基在亚基交换过程和 α 激活物复合物中亚基的翻译后修饰中的必要性,以及稳定催化亚磺酰酸的阴离子形式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验