Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, S. Łojasiewicza 11, 30-348 Krakow, Poland.
Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland.
Biochim Biophys Acta Biomembr. 2024 Jun;1866(5):184327. doi: 10.1016/j.bbamem.2024.184327. Epub 2024 Apr 27.
The escalation of global plastic production, reaching an annual output of 400 million tons, has significantly intensified concerns regarding plastic waste management. This has been exacerbated by improper recycling and disposal practices, contributing to the impending crisis of plastic pollution. Predictions indicate that by 2025, the environment will bear the burden of over ten billion metric tons of accumulated plastic waste. This situation has led to the concerning release of microplastics and nanoplastics (NPs) into the environment as plastic materials degrade, thereby posing risks to both ecosystems and human health. Nanoparticle interactions with living organisms have garnered significant attention due to their potential to disrupt vital biological processes. Of particular interest are lipid membranes, acting as crucial gatekeepers, underscoring the importance of comprehending the intricate process of NP penetration. Molecular dynamics (MD) simulations serve as a robust tool, offering molecular-level insights into these intricate interactions. In this study, we leverage all-atom MD simulations to delve into the interactions between lipid bilayers and polyethylene (PETH) chains of varying lengths. The investigation spans diverse lipid bilayer compositions-ranging from pure POPC to POPC:DPPC mixtures-revealing how PETH accommodates itself, adopts extended conformations, and influences membrane structure and ordering. Significantly, while longer PETH chains demonstrate limited passive diffusion, their potential to penetrate bilayers over extended timescales emerges as a significant revelation. Overall, this research significantly advances our comprehension of NP-membrane interactions, shedding light on the potential environmental and health implications that lie ahead.
全球塑料产量的不断攀升,达到了每年 4 亿吨,这使得人们对塑料废物管理的担忧日益加剧。由于回收和处理方法不当,这一问题进一步恶化,导致塑料污染危机迫在眉睫。预测表明,到 2025 年,环境将承载超过 100 亿吨累积塑料废物的负担。这种情况导致了微塑料和纳米塑料(NPs)的释放,因为塑料材料降解,从而对生态系统和人类健康构成风险。由于纳米颗粒与生物体相互作用可能会破坏重要的生物过程,因此它们引起了人们的极大关注。特别值得关注的是脂质膜,它们作为关键的守门员,强调了理解 NP 渗透复杂过程的重要性。分子动力学(MD)模拟是一种强大的工具,可以提供有关这些复杂相互作用的分子水平的见解。在这项研究中,我们利用全原子 MD 模拟深入研究了脂质双层和不同长度的聚乙烯(PETH)链之间的相互作用。研究涵盖了多种脂质双层组成,从纯 POPC 到 POPC:DPPC 混合物,揭示了 PETH 如何适应自己,采用扩展构象,以及如何影响膜结构和有序性。值得注意的是,虽然较长的 PETH 链表现出有限的被动扩散,但它们在较长时间内穿透双层的潜力是一个重要的发现。总的来说,这项研究极大地提高了我们对 NP-膜相互作用的理解,揭示了未来可能存在的环境和健康影响。