Suppr超能文献

光相干断层扫描引导的布里渊显微镜突出了 Mthfd1l 鼠突变体前神经管闭合过程中组织硬度的区域性差异。

Optical coherence tomography-guided Brillouin microscopy highlights regional tissue stiffness differences during anterior neural tube closure in the Mthfd1l murine mutant.

机构信息

Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA.

Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.

出版信息

Development. 2024 May 15;151(10). doi: 10.1242/dev.202475. Epub 2024 May 17.

Abstract

Neurulation is a highly synchronized biomechanical process leading to the formation of the brain and spinal cord, and its failure leads to neural tube defects (NTDs). Although we are rapidly learning the genetic mechanisms underlying NTDs, the biomechanical aspects are largely unknown. To understand the correlation between NTDs and tissue stiffness during neural tube closure (NTC), we imaged an NTD murine model using optical coherence tomography (OCT), Brillouin microscopy and confocal fluorescence microscopy. Here, we associate structural information from OCT with local stiffness from the Brillouin signal of embryos undergoing neurulation. The stiffness of neuroepithelial tissues in Mthfd1l null embryos was significantly lower than that of wild-type embryos. Additionally, exogenous formate supplementation improved tissue stiffness and gross embryonic morphology in nullizygous and heterozygous embryos. Our results demonstrate the significance of proper tissue stiffness in normal NTC and pave the way for future studies on the mechanobiology of normal and abnormal embryonic development.

摘要

神经管形成是一个高度同步的生物力学过程,导致大脑和脊髓的形成,其失败会导致神经管缺陷(NTDs)。尽管我们正在迅速了解 NTDs 的遗传机制,但生物力学方面在很大程度上还不清楚。为了了解神经管闭合(NTC)期间 NTDs 和组织硬度之间的相关性,我们使用光学相干断层扫描(OCT)、布里渊显微镜和共聚焦荧光显微镜对 NTD 鼠模型进行了成像。在这里,我们将 OCT 的结构信息与正在进行神经管形成的胚胎的布里渊信号的局部硬度相关联。Mthfd1l 缺失胚胎的神经上皮组织的硬度明显低于野生型胚胎。此外,外源性甲酸盐补充改善了纯合子和杂合子胚胎的组织硬度和大体胚胎形态。我们的结果表明适当的组织硬度在正常 NTC 中的重要性,并为正常和异常胚胎发育的机械生物学的未来研究铺平了道路。

相似文献

2
Deletion of neural tube defect-associated gene Mthfd1l causes reduced cranial mesenchyme density.
Birth Defects Res. 2019 Nov 15;111(19):1520-1534. doi: 10.1002/bdr2.1591. Epub 2019 Sep 13.
3
Deletion of the neural tube defect-associated gene disrupts one-carbon and central energy metabolism in mouse embryos.
J Biol Chem. 2018 Apr 20;293(16):5821-5833. doi: 10.1074/jbc.RA118.002180. Epub 2018 Feb 26.
4
Deletion of Mthfd1l causes embryonic lethality and neural tube and craniofacial defects in mice.
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):549-54. doi: 10.1073/pnas.1211199110. Epub 2012 Dec 24.
6
Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography.
Birth Defects Res. 2019 Aug 15;111(14):991-998. doi: 10.1002/bdr2.1389. Epub 2018 Sep 21.
7
Neural tube closure depends on expression of Grainyhead-like 3 in multiple tissues.
Dev Biol. 2018 Mar 15;435(2):130-137. doi: 10.1016/j.ydbio.2018.01.016. Epub 2018 Feb 2.
9
Mitochondrial one-carbon metabolism and neural tube defects.
Birth Defects Res A Clin Mol Teratol. 2014 Aug;100(8):576-83. doi: 10.1002/bdra.23268. Epub 2014 Jul 1.
10
Metabotype analysis of Mthfd1l-null mouse embryos using desorption electrospray ionization mass spectrometry imaging.
Anal Bioanal Chem. 2021 May;413(13):3573-3582. doi: 10.1007/s00216-021-03308-5. Epub 2021 Apr 8.

本文引用的文献

1
MTHFD1L confers a poor prognosis and malignant phenotype in esophageal squamous cell carcinoma by activating the ERK5 signaling pathway.
Exp Cell Res. 2023 Jun 1;427(1):113584. doi: 10.1016/j.yexcr.2023.113584. Epub 2023 Mar 31.
2
Gene-environment interactions underlying the etiology of neural tube defects.
Curr Top Dev Biol. 2023;152:193-220. doi: 10.1016/bs.ctdb.2022.10.007. Epub 2022 Nov 23.
3
4
Mouse embryo phenotyping with optical coherence tomography.
Front Cell Dev Biol. 2022 Sep 9;10:1000237. doi: 10.3389/fcell.2022.1000237. eCollection 2022.
5
Spina Bifida.
N Engl J Med. 2022 Aug 4;387(5):444-450. doi: 10.1056/NEJMra2116032.
6
Neural crest mechanosensors: Seeing old proteins in a new light.
Dev Cell. 2022 Aug 8;57(15):1792-1801. doi: 10.1016/j.devcel.2022.07.005. Epub 2022 Jul 27.
7
MTHFD1L knockdown diminished cells growth in papillary thyroid cancer.
Tissue Cell. 2022 Aug;77:101869. doi: 10.1016/j.tice.2022.101869. Epub 2022 Jul 16.
10
A Toolbox to Study Tissue Mechanics In Vivo and Ex Vivo.
Methods Mol Biol. 2022;2438:495-515. doi: 10.1007/978-1-0716-2035-9_29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验