Suppr超能文献

CCP-GNN:用于改进图神经网络的竞争协方差池化

CCP-GNN: Competitive Covariance Pooling for Improving Graph Neural Networks.

作者信息

Zhu Pengfei, Li Jialu, Dong Zhe, Hu Qinghua, Wang Xiao, Wang Qilong

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):6395-6406. doi: 10.1109/TNNLS.2024.3390249. Epub 2025 Apr 4.

Abstract

Graph neural networks (GNNs) have advanced graph classification tasks, where a global pooling to generate graph representations by summarizing node features plays a critical role in the final performance. Most of the existing GNNs are built with a global average pooling (GAP) or its variants, which however, take no full consideration of node specificity while neglecting rich statistics inherent in node features, limiting classification performance of GNNs. Therefore, this article proposes a novel competitive covariance pooling (CCP) based on observation of graph structures, i.e., graphs generally can be identified by a (small) key part of nodes. To this end, our CCP generates node-level second-order representations to explore rich statistics inherent in node features, which are fed to a competitive-based attention module for effectively discovering key nodes through learning node weights. Subsequently, our CCP aggregates node-level second-order representations in conjunction with node weights by summation to produce a covariance representation for each graph, while an iterative matrix normalization is introduced to consider geometry of covariances. Note that our CCP can be flexibly integrated with various GNNs (namely CCP-GNN) to improve the performance of graph classification with little computational cost. The experimental results on seven graph-level benchmarks show that our CCP-GNN is superior or competitive to state-of-the-arts. Our code is available at https://github.com/Jillian555/CCP-GNN.

摘要

图神经网络(GNN)推动了图分类任务的发展,其中通过汇总节点特征来生成图表示的全局池化在最终性能中起着关键作用。现有的大多数GNN都是基于全局平均池化(GAP)或其变体构建的,然而,这些方法在忽略节点特征中固有的丰富统计信息的同时,没有充分考虑节点的特异性,从而限制了GNN的分类性能。因此,本文基于对图结构的观察提出了一种新颖的竞争协方差池化(CCP)方法,即图通常可以由节点的(一小部分)关键部分来识别。为此,我们的CCP生成节点级二阶表示以探索节点特征中固有的丰富统计信息,这些信息被输入到基于竞争的注意力模块中,通过学习节点权重来有效地发现关键节点。随后,我们的CCP结合节点权重通过求和聚合节点级二阶表示,为每个图生成一个协方差表示,同时引入迭代矩阵归一化来考虑协方差的几何形状。请注意,我们的CCP可以灵活地与各种GNN集成(即CCP-GNN),以在几乎不增加计算成本的情况下提高图分类的性能。在七个图级基准上的实验结果表明,我们的CCP-GNN优于或可与现有技术相媲美。我们的代码可在https://github.com/Jillian555/CCP-GNN获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验