Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America.
Department of Computational Medicine, University of California Los Angeles, Los Angeles, California, United States of America.
PLoS Pathog. 2024 Apr 29;20(4):e1012171. doi: 10.1371/journal.ppat.1012171. eCollection 2024 Apr.
Researchers and clinicians often rely on molecular assays like PCR to identify and monitor viral infections, instead of the resource-prohibitive gold standard of viral culture. However, it remains unclear when (if ever) PCR measurements of viral load are reliable indicators of replicating or infectious virus. The recent popularity of PCR protocols targeting subgenomic RNA for SARS-CoV-2 has caused further confusion, as the relationships between subgenomic RNA and standard total RNA assays are incompletely characterized and opinions differ on which RNA type better predicts culture outcomes. Here, we explore these issues by comparing total RNA, subgenomic RNA, and viral culture results from 24 studies of SARS-CoV-2 in non-human primates (including 2167 samples from 174 individuals) using custom-developed Bayesian statistical models. On out-of-sample data, our best models predict subgenomic RNA positivity from total RNA data with 91% accuracy, and they predict culture positivity with 85% accuracy. Further analyses of individual time series indicate that many apparent prediction errors may arise from issues with assay sensitivity or sample processing, suggesting true accuracy may be higher than these estimates. Total RNA and subgenomic RNA showed equivalent performance as predictors of culture positivity. Multiple cofactors (including exposure conditions, host traits, and assay protocols) influence culture predictions, yielding insights into biological and methodological sources of variation in assay outcomes-and indicating that no single threshold value applies across study designs. We also show that our model can accurately predict when an individual is no longer infectious, illustrating the potential for future models trained on human data to guide clinical decisions on case isolation. Our work shows that meta-analysis of in vivo data can overcome longstanding challenges arising from limited sample sizes and can yield robust insights beyond those attainable from individual studies. Our analytical pipeline offers a framework to develop similar predictive tools in other virus-host systems, including models trained on human data, which could support laboratory analyses, medical decisions, and public health guidelines.
研究人员和临床医生经常依赖聚合酶链反应(PCR)等分子检测方法来识别和监测病毒感染,而不是采用资源密集型的病毒培养作为金标准。然而,PCR 病毒载量测量值何时(如果有)能够可靠地指示复制或感染性病毒,目前仍不清楚。最近针对 SARS-CoV-2 的亚基因组 RNA 的 PCR 方案变得流行,这进一步造成了混淆,因为亚基因组 RNA 与标准总 RNA 检测之间的关系尚未完全确定,并且对于哪种 RNA 类型更能预测培养结果的意见也存在分歧。在这里,我们通过使用定制的贝叶斯统计模型,比较了来自非人类灵长类动物 24 项 SARS-CoV-2 研究的总 RNA、亚基因组 RNA 和病毒培养结果(包括来自 174 个人的 2167 个样本)。在样本外数据上,我们最好的模型可以以 91%的准确度从总 RNA 数据预测亚基因组 RNA 阳性,并且可以以 85%的准确度预测培养阳性。对个别时间序列的进一步分析表明,许多明显的预测错误可能源于检测灵敏度或样本处理方面的问题,这表明真实的准确性可能高于这些估计。总 RNA 和亚基因组 RNA 作为培养阳性的预测因子表现相当。多个协变量(包括暴露条件、宿主特征和检测方案)影响培养预测,为检测结果的生物学和方法学来源提供了深入了解,并表明没有单一的阈值值适用于所有研究设计。我们还表明,我们的模型可以准确预测个体何时不再具有传染性,这说明了未来基于人类数据训练的模型在指导病例隔离的临床决策方面的潜力。我们的工作表明,对体内数据的荟萃分析可以克服由于样本量有限而导致的长期挑战,并产生超越个别研究所能获得的稳健见解。我们的分析管道为在其他病毒-宿主系统中开发类似的预测工具提供了一个框架,包括基于人类数据训练的模型,这些模型可以支持实验室分析、医疗决策和公共卫生指南。
Clin Microbiol Infect. 2022-1
J Clin Invest. 2021-4-1
Nat Rev Microbiol. 2023-3
Nature. 2022-2
Proc Natl Acad Sci U S A. 2021-12-7