School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin Province 132012, China.
Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
Int J Biol Macromol. 2024 May;268(Pt 2):131937. doi: 10.1016/j.ijbiomac.2024.131937. Epub 2024 Apr 27.
As a cellulose-derived material, nanocellulose possesses unique properties that make it an ideal substrate for various functional composite materials. In this study, we developed a novel composite membrane material capable of adsorbing and photo-catalyzing formaldehyde by immobilizing HKUST-1 (copper open framework composed of 1,3,5-benzenetricarboxylic acid) onto NFC (Nano-fibrillated cellulose) membranes and subsequently loading modified carbon nitride. The synthesized CNx@HN composite membrane (consisting of NFC membrane with anchored HKUST-1 and modified g-CNx nanosheets) was thoroughly characterized, and its photocatalytic degradation performance towards low concentrations of formaldehyde (3.0 mg/m) was investigated. The results demonstrated that HKUST-1's porous nature exhibited a concentrated adsorption capacity for formaldehyde, while the modified CNx (Modified g-CNx nanosheets) displayed robust photocatalytic degradation of formaldehyde. The synergistic effect of HKUST-1 and modified CNx on the NFC membrane significantly enhanced the efficiency of formaldehyde degradation. Under xenon lamp irradiation, CNx@HN-5 achieved a total removal efficiency of 86.9 % for formaldehyde, with a photocatalytic degradation efficiency of 48.45 %, showcasing its exceptional ability in both adsorption and photocatalytic degradation of formaldehyde. Furthermore, after 10 cycles of recycling, the composite membrane exhibited excellent stability for the photocatalytic degradation process. Therefore, this study presents a green and facile strategy to fabricate nanocellulose-supported composite membranes with great potential for practical applications in formaldehyde degradation.
作为一种纤维素衍生材料,纳米纤维素具有独特的性质,使其成为各种功能复合材料的理想基材。在这项研究中,我们通过将 HKUST-1(由 1,3,5-苯三甲酸组成的铜开放骨架)固定在 NFC(纳米原纤化纤维素)膜上并随后负载改性碳氮化物,开发了一种能够吸附和光催化甲醛的新型复合膜材料。合成的 CNx@HN 复合膜(由带有固定的 HKUST-1 和改性 g-CNx 纳米片的 NFC 膜组成)进行了彻底的表征,并研究了其对低浓度甲醛(3.0mg/m)的光催化降解性能。结果表明,HKUST-1 的多孔性质对甲醛表现出集中的吸附能力,而改性的 CNx(改性 g-CNx 纳米片)则表现出对甲醛的强催化降解能力。HKUST-1 和改性 CNx 在 NFC 膜上的协同作用显著提高了甲醛降解的效率。在氙灯照射下,CNx@HN-5 对甲醛的总去除效率达到 86.9%,光催化降解效率达到 48.45%,展示了其在甲醛吸附和光催化降解方面的优异性能。此外,在 10 次循环回收后,复合膜在光催化降解过程中表现出优异的稳定性。因此,本研究提出了一种绿色简便的策略,用于制备具有实际应用潜力的纳米纤维素负载复合膜,用于甲醛降解。