Suppr超能文献

心肌细胞 T 管结构受前负荷和后负荷的调节:在心脏代偿和失代偿中的作用。

Regulation of cardiomyocyte t-tubule structure by preload and afterload: Roles in cardiac compensation and decompensation.

机构信息

Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.

K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway.

出版信息

J Physiol. 2024 Sep;602(18):4487-4510. doi: 10.1113/JP284566. Epub 2024 Apr 30.

Abstract

Mechanical load is a potent regulator of cardiac structure and function. Although high workload during heart failure is associated with disruption of cardiomyocyte t-tubules and Ca homeostasis, it remains unclear whether changes in preload and afterload may promote adaptive t-tubule remodelling. We examined this issue by first investigating isolated effects of stepwise increases in load in cultured rat papillary muscles. Both preload and afterload increases produced a biphasic response, with the highest t-tubule densities observed at moderate loads, whereas excessively low and high loads resulted in low t-tubule levels. To determine the baseline position of the heart on this bell-shaped curve, mice were subjected to mildly elevated preload or afterload (1 week of aortic shunt or banding). Both interventions resulted in compensated cardiac function linked to increased t-tubule density, consistent with ascension up the rising limb of the curve. Similar t-tubule proliferation was observed in human patients with moderately increased preload or afterload (mitral valve regurgitation, aortic stenosis). T-tubule growth was associated with larger Ca transients, linked to upregulation of L-type Ca channels, Na-Ca exchanger, mechanosensors and regulators of t-tubule structure. By contrast, marked elevation of cardiac load in rodents and patients advanced the heart down the declining limb of the t-tubule-load relationship. This bell-shaped relationship was lost in the absence of electrical stimulation, indicating a key role of systolic stress in controlling t-tubule plasticity. In conclusion, modest augmentation of workload promotes compensatory increases in t-tubule density and Ca cycling, whereas this adaptation is reversed in overloaded hearts during heart failure progression. KEY POINTS: Excised papillary muscle experiments demonstrated a bell-shaped relationship between cardiomyocyte t-tubule density and workload (preload or afterload), which was only present when muscles were electrically stimulated. The in vivo heart at baseline is positioned on the rising phase of this curve because moderate increases in preload (mice with brief aortic shunt surgery, patients with mitral valve regurgitation) resulted in t-tubule growth. Moderate increases in afterload (mice and patients with mild aortic banding/stenosis) similarly increased t-tubule density. T-tubule proliferation was associated with larger Ca transients, with upregulation of the L-type Ca channel, Na-Ca exchanger, mechanosensors and regulators of t-tubule structure. By contrast, marked elevation of cardiac load in rodents and patients placed the heart on the declining phase of the t-tubule-load relationship, promoting heart failure progression. The dependence of t-tubule structure on preload and afterload thus enables both compensatory and maladaptive remodelling, in rodents and humans.

摘要

机械负荷是调节心脏结构和功能的重要因素。尽管心力衰竭时的高工作量与肌小节 T 管和 Ca 稳态的破坏有关,但尚不清楚前负荷和后负荷的变化是否会促进适应性 T 管重塑。我们首先通过研究培养的大鼠乳头肌中负荷的逐步增加的单一影响来研究这个问题。前负荷和后负荷的增加都产生了双相反应,在中等负荷下观察到最高的 T 管密度,而过低和过高的负荷导致 T 管水平降低。为了确定心脏在这个钟形曲线上的基准位置,我们使小鼠经历轻度升高的前负荷或后负荷(主动脉分流术或带术 1 周)。这两种干预都导致了心脏功能的代偿性增加,与 T 管密度的增加有关,这与曲线上升支的上升一致。在中度增加前负荷或后负荷的人类患者(二尖瓣反流、主动脉瓣狭窄)中也观察到类似的 T 管增殖。T 管的生长与较大的 Ca 瞬变有关,这与 L 型 Ca 通道、Na-Ca 交换体、机械感受器和 T 管结构调节剂的上调有关。相比之下,在啮齿动物和患者中显著升高的心脏负荷使心脏沿着 T 管负荷关系的下降支前进。当没有电刺激时,这种钟形关系丢失,表明收缩期应激在控制 T 管可塑性方面起着关键作用。总之,适度增加工作量可促进 T 管密度和 Ca 循环的代偿性增加,而在心力衰竭进展过程中,超负荷心脏的这种适应性会被逆转。关键点:在离体乳头肌实验中,肌小节 T 管密度与工作量(前负荷或后负荷)之间存在钟形关系,只有当肌肉受到电刺激时才会出现这种关系。基础状态下的活体心脏位于这个曲线的上升阶段,因为轻度增加前负荷(主动脉分流术短暂手术的小鼠、二尖瓣反流的患者)会导致 T 管生长。后负荷的适度增加(轻度主动脉缩窄/狭窄的小鼠和患者)同样增加了 T 管密度。T 管增殖与较大的 Ca 瞬变有关,L 型 Ca 通道、Na-Ca 交换体、机械感受器和 T 管结构调节剂的上调。相比之下,在啮齿动物和患者中明显升高的心脏负荷使心脏处于 T 管负荷关系的下降阶段,促进心力衰竭的进展。因此,在啮齿动物和人类中,T 管结构对前负荷和后负荷的依赖性使心脏既能进行代偿性改变,也能进行适应性改变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验