Suppr超能文献

利用集成机器学习对非酒精性脂肪性肝病(NAFLD)肝纤维化进行无创诊断的临床风险预测算法的基准测试

Benchmarking clinical risk prediction algorithms with ensemble machine learning for the noninvasive diagnosis of liver fibrosis in NAFLD.

作者信息

Charu Vivek, Liang Jane W, Mannalithara Ajitha, Kwong Allison, Tian Lu, Kim W Ray

机构信息

Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.

Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.

出版信息

Hepatology. 2024 Nov 1;80(5):1184-1195. doi: 10.1097/HEP.0000000000000908. Epub 2024 Apr 30.

Abstract

BACKGROUND AND AIMS

Ensemble machine-learning methods, like the superlearner, combine multiple models into a single one to enhance predictive accuracy. Here we explore the potential of the superlearner as a benchmarking tool for clinical risk prediction, illustrating the approach to identifying significant liver fibrosis among patients with NAFLD.

APPROACH AND RESULTS

We used 23 demographic/clinical variables to train superlearner(s) on data from the NASH-clinical research network observational study (n = 648) and validated models with data from the FLINT trial (n = 270) and National Health and Nutrition Examination Survey (NHANES) participants with NAFLD (n = 1244). Comparing the superlearner's performance to existing models (Fibrosis-4 [FIB-4], NAFLD fibrosis score, Forns, AST to Platelet Ratio Index [APRI], BARD, and Steatosis-Associated Fibrosis Estimator [SAFE]), it exhibited strong discriminative ability in the FLINT and NHANES validation sets, with AUCs of 0.79 (95% CI: 0.73-0.84) and 0.74 (95% CI: 0.68-0.79) respectively.

CONCLUSIONS

Notably, the SAFE score performed similarly to the superlearner, both of which outperformed FIB-4, APRI, Forns, and BARD scores in the validation data sets. Surprisingly, the superlearner derived from 12 base models matched the performance of one with 90 base models. Overall, the superlearner, being the "best-in-class" machine-learning predictor, excelled in detecting fibrotic NASH, and this approach can be used to benchmark the performance of conventional clinical risk prediction models.

摘要

背景与目的

集成机器学习方法,如超级学习器,将多个模型组合成一个单一模型以提高预测准确性。在此,我们探索超级学习器作为临床风险预测基准工具的潜力,阐述在非酒精性脂肪性肝病(NAFLD)患者中识别显著肝纤维化的方法。

方法与结果

我们使用23个人口统计学/临床变量,基于非酒精性脂肪性肝炎临床研究网络观察性研究(n = 648)的数据训练超级学习器,并使用弗林特试验(n = 270)和美国国家健康与营养检查调查(NHANES)中NAFLD参与者(n = 1244)的数据对模型进行验证。将超级学习器的性能与现有模型(纤维化-4 [FIB-4]、NAFLD纤维化评分、福恩斯指数、天冬氨酸氨基转移酶与血小板比值指数[APRI]、BARD评分和脂肪变性相关纤维化估计器[SAFE])进行比较,其在弗林特和NHANES验证集中表现出强大的判别能力,曲线下面积(AUC)分别为0.79(95%可信区间:0.73 - 0.84)和0.74(95%可信区间:0.68 - 0.79)。

结论

值得注意的是,SAFE评分与超级学习器表现相似,在验证数据集中二者均优于FIB-4、APRI、福恩斯指数和BARD评分。令人惊讶的是,由12个基础模型衍生的超级学习器与由90个基础模型衍生的超级学习器性能相当。总体而言,作为“同类最佳”机器学习预测器的超级学习器在检测纤维化非酒精性脂肪性肝炎方面表现出色,且该方法可用于评估传统临床风险预测模型的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验