Suppr超能文献

一种新颖的分层方法,用于洞察喀斯特湿地地表水的光谱特征,并使用野外高光谱数据估算其非光活性参数。

A novel hierarchical approach to insight to spectral characteristics in surface water of karst wetlands and estimate its non-optically active parameters using field hyperspectral data.

机构信息

College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China.

College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China.

出版信息

Water Res. 2024 Jun 15;257:121673. doi: 10.1016/j.watres.2024.121673. Epub 2024 Apr 24.

Abstract

Wetlands cover only around 6 % of the Earth's land surface, and are recognized as one of the three major ecosystems, alongside forests and oceans. The ecological structure and function of karst wetlands are unique due to the influence of geologic structure. At present, the unclear spectral morphology of surface water in karst wetlands poses a significant challenge in remote sensing estimation of non-optically active water quality parameters (NAWQPs). This study proposed a novel multi-scale spectral morphology feature extraction (MSFE) method to insight to spectral characteristics in surface water of karst wetlands, and further screen the sensitive features of NAWQPs. Then we constructed three remote sensing inversion strategies for NAWQPs (TN, TP, NH_N, DO), including direct estimation, indirect estimation, and auxiliary estimation. Finally, we constructed a novel pH-based hierarchical analysis framework (pH_HA) to thoroughly explore the influence of alkalinity-biased characteristics of karst water on the spectral domain of NAWQPs and its estimation accuracy using in-situ hyperspectral data, respectively. We found that the spectral characteristics of karst waters at the first reflectance peak (580 nm) differed significantly from other water body types. The MSFE successfully captured the sensitive spectral domains for NAWQPs, and focused on between 500 and 600 nm and 900-960 nm. The sensitive features captured by MSFE improved estimation accuracy of NAWQPs (R >0.9). Direct estimation presented more stable performance compared to the auxiliary estimation (average RMSE of 0.366 mg/L), and the auxiliary estimation model further improved the retrieval accuracy of TN compared to direct estimation model (R increasing from 0.43 to 0.56). The novel hierarchical framework clearly revealed the notable changes in the sensitive spectral domains of NAWQPs under different pH values, and enabled more precise determination of spectral subdomains of NAWQPs, and identified the optimal spectral features. The pH_HA framework effectively improved the estimation accuracy of NAWQPs (R increased from 0.514 to over 0.9), and the estimation accuracies (R) of four NAWQPs were all more than 0.9 when the pH value was over 8.5. Our works provide an effective approach for monitoring water quality in karst wetlands.

摘要

湿地仅占地球陆地表面的 6%左右,与森林和海洋一起被公认为三大生态系统之一。由于地质结构的影响,喀斯特湿地的生态结构和功能具有独特性。目前,喀斯特湿地地表水的不明确光谱形态给非光学活性水质参数(NAWQPs)的遥感估算带来了重大挑战。本研究提出了一种新的多尺度光谱形态特征提取(MSFE)方法,以洞察喀斯特湿地地表水的光谱特征,并进一步筛选 NAWQPs 的敏感特征。然后,我们构建了三种用于 NAWQPs(TN、TP、NH_N、DO)的遥感反演策略,包括直接估计、间接估计和辅助估计。最后,我们构建了一种新的基于 pH 的层次分析框架(pH_HA),分别利用原位高光谱数据深入探讨了喀斯特水的碱度偏倚特征对 NAWQPs 光谱域及其估计精度的影响。我们发现,第一反射峰(580nm)处的喀斯特水光谱特征与其他水体类型有明显差异。MSFE 成功捕捉到了 NAWQPs 的敏感光谱域,重点关注 500-600nm 和 900-960nm 之间。MSFE 捕获的敏感特征提高了 NAWQPs 的估计精度(R>0.9)。与辅助估计(平均 RMSE 为 0.366mg/L)相比,直接估计表现出更稳定的性能,辅助估计模型进一步提高了 TN 的反演精度,与直接估计模型相比(R 从 0.43 增加到 0.56)。新的层次框架清楚地揭示了不同 pH 值下 NAWQPs 敏感光谱域的显著变化,能够更精确地确定 NAWQPs 的光谱子域,并确定最佳光谱特征。pH_HA 框架有效地提高了 NAWQPs 的估计精度(R 从 0.514 增加到 0.9 以上),当 pH 值超过 8.5 时,四个 NAWQPs 的估计精度(R)均超过 0.9。我们的工作为监测喀斯特湿地水质提供了一种有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验