Suppr超能文献

纳米处理铝合金2024的电弧增材制造

Wire-Arc Additive Manufacturing of Nano-Treated Aluminum Alloy 2024.

作者信息

Chi Yitian, Murali Narayanan, Zheng Tianqi, Liu Jingke, Li Xiaochun

机构信息

Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California, USA.

Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California, USA.

出版信息

3D Print Addit Manuf. 2024 Apr 1;11(2):e529-e536. doi: 10.1089/3dp.2022.0150. Epub 2024 Apr 16.

Abstract

With high strength and good fatigue resistance, Al-Cu alloys such as AA2024 are widely used in the aerospace and automotive industries. However, the system's susceptibility to hot cracking and other solidification defects hinders its development in metal additive manufacturing (AM). A nano-treated AA2024 deposition, with the addition of TiC nanoparticles, is successfully additively manufactured without cracks. Microstructural analysis suggests nanoparticles not only mitigate the hot cracking sensitivity but also significantly refine and homogenize grains, resulting in an average size of 23.2 ± 0.4 μm. Microhardness profiles show consistent mechanical performance along the build direction, regardless of cyclic thermal exposure. Finally, excellent tensile strength and elongation up to 428 MPa and 7.4% were achieved after heat treatment. The combined results show a great promise of nano-treating in high-strength aluminum AM.

摘要

诸如AA2024之类的铝铜合金具有高强度和良好的抗疲劳性,在航空航天和汽车工业中得到广泛应用。然而,该体系对热裂纹和其他凝固缺陷的敏感性阻碍了其在金属增材制造(AM)中的发展。通过添加TiC纳米颗粒成功地增材制造出了无裂纹的纳米处理AA2024沉积物。微观结构分析表明,纳米颗粒不仅降低了热裂纹敏感性,还显著细化并均匀化了晶粒,平均晶粒尺寸为23.2±0.4μm。显微硬度曲线表明,无论循环热暴露情况如何,沿构建方向的机械性能都是一致的。最后,热处理后获得了高达428MPa的优异抗拉强度和7.4%的伸长率。综合结果表明,纳米处理在高强度铝增材制造中具有巨大潜力。

相似文献

1
Wire-Arc Additive Manufacturing of Nano-Treated Aluminum Alloy 2024.
3D Print Addit Manuf. 2024 Apr 1;11(2):e529-e536. doi: 10.1089/3dp.2022.0150. Epub 2024 Apr 16.
3
Review of Aluminum Alloy Development for Wire Arc Additive Manufacturing.
Materials (Basel). 2021 Sep 17;14(18):5370. doi: 10.3390/ma14185370.
4
Welding and Additive Manufacturing with Nanoparticle-Enhanced Aluminum 7075 Wire.
J Alloys Compd. 2020 Sep 5;834. doi: 10.1016/j.jallcom.2020.154987. Epub 2020 Apr 13.
5
Wire Arc Additive Manufacturing (WAAM) for Aluminum-Lithium Alloys: A Review.
Materials (Basel). 2023 Feb 6;16(4):1375. doi: 10.3390/ma16041375.
7
Wire Arc Additive Manufacturing of Al-Mg Alloy with the Addition of Scandium and Zirconium.
Materials (Basel). 2021 Jun 30;14(13):3665. doi: 10.3390/ma14133665.
8
3D printing of high-strength aluminium alloys.
Nature. 2017 Sep 20;549(7672):365-369. doi: 10.1038/nature23894.
10
Tensile, Fatigue Properties and Their Anisotropies of Al-Mg Alloy Fabricated by Wire-Arc Additive Manufacturing.
3D Print Addit Manuf. 2024 Jun 18;11(3):e1324-e1333. doi: 10.1089/3dp.2022.0348. eCollection 2024 Jun.

引用本文的文献

1
A review on aluminum matrix composites' characteristics and applications for automotive sector.
Heliyon. 2024 Sep 26;10(20):e38576. doi: 10.1016/j.heliyon.2024.e38576. eCollection 2024 Oct 30.

本文引用的文献

2
Bulk ultrafine grained/nanocrystalline metals via slow cooling.
Sci Adv. 2019 Aug 23;5(8):eaaw2398. doi: 10.1126/sciadv.aaw2398. eCollection 2019 Aug.
3
Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075.
Nat Commun. 2019 Jan 9;10(1):98. doi: 10.1038/s41467-018-07989-y.
4
3D printing of high-strength aluminium alloys.
Nature. 2017 Sep 20;549(7672):365-369. doi: 10.1038/nature23894.
5
Mechanical properties of Ti-6Al-4V specimens produced by shaped metal deposition.
Sci Technol Adv Mater. 2009 May 18;10(1):015008. doi: 10.1088/1468-6996/10/1/015008. eCollection 2009 Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验