Suppr超能文献

通过界面修饰对SnO和钙钛矿进行协同调制来提高钙钛矿太阳能电池的光伏性能

Improvement of Photovoltaic Performance of Perovskite Solar Cells by Synergistic Modulation of SnO and Perovskite via Interfacial Modification.

作者信息

Shen Jinliang, Ge Xiang, Ge Qing, Li Na, Wang Yuhang, Liu Xudong, Tao Junlei, He Tingwei, Yang Shaopeng

机构信息

National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China.

Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.

出版信息

ACS Appl Mater Interfaces. 2024 May 15;16(19):24748-24759. doi: 10.1021/acsami.4c03595. Epub 2024 May 1.

Abstract

In the past decade, perovskite solar cell (PSC) photoelectric conversion efficiency has advanced significantly, and tin dioxide (SnO) has been extensively used as the electron transport layer (ETL). Due to its high electron mobility, strong chemical stability, energy level matching with perovskite, and easy low-temperature fabrication, SnO is one of the most effective ETL materials. However, the SnO material as an ETL has its limitations. For example, SnO films prepared by low-temperature spin-coating contain a large number of oxygen vacancies, resulting in energy loss and high open-circuit voltage () loss. In addition, the crystal quality of perovskites is closely related to the substrate, and the disordered crystal orientation will lead to ion migration, resulting in a large number of uncoordinated Pb defects. Therefore, interface optimization is essential to improve the efficiency and stability of the PSC. In this work, 2-(5-chloro-2-benzotriazolyl)-6--butyl-p-cresol (CBTBC) was introduced for ETL modification. On the one hand, the hydroxyl group of CBTBC forms a Lewis mixture with the Sn atom, which reduces the oxygen vacancy defect and prevents nonradiative recombination. On the other hand, the SnO/CBTBC interface can effectively improve the crystal orientation of perovskite by influencing the crystallization kinetics of perovskite, and the nitrogen element in CBTBC can effectively passivate the uncoordinated Pb defects at the SnO/perovskite interface. Finally, the prevailing PCE of PSC (1.68 eV) modified by CBTBC was 20.34% ( = 1.214 V, = 20.49 mA/cm, FF = 82.49%).

摘要

在过去十年中,钙钛矿太阳能电池(PSC)的光电转换效率有了显著提高,二氧化锡(SnO)已被广泛用作电子传输层(ETL)。由于其高电子迁移率、强化学稳定性、与钙钛矿的能级匹配以及易于低温制备,SnO是最有效的ETL材料之一。然而,SnO材料作为ETL也有其局限性。例如,通过低温旋涂制备的SnO薄膜含有大量氧空位,导致能量损失和高开路电压()损失。此外,钙钛矿的晶体质量与基底密切相关,无序的晶体取向会导致离子迁移,从而产生大量未配位的Pb缺陷。因此,界面优化对于提高PSC的效率和稳定性至关重要。在这项工作中,引入了2-(5-氯-2-苯并三唑基)-6-叔丁基对甲酚(CBTBC)对ETL进行改性。一方面,CBTBC的羟基与Sn原子形成路易斯络合物,减少了氧空位缺陷并防止非辐射复合。另一方面,SnO/CBTBC界面可以通过影响钙钛矿的结晶动力学有效改善钙钛矿的晶体取向,并且CBTBC中的氮元素可以有效钝化SnO/钙钛矿界面处的未配位Pb缺陷。最终,经CBTBC改性的PSC的主流光电转换效率(PCE,1.68 eV)为20.34%(= 开路电压1.214 V,= 短路电流密度20.49 mA/cm,填充因子FF = 82.49%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验