Suppr超能文献

A slow but steady nanoLuc: R162A mutation results in a decreased, but stable, nanoLuc activity. 纳米荧光素酶缓慢但稳定:R162A 突变导致纳米荧光素酶活性降低,但稳定。

A slow but steady nanoLuc: R162A mutation results in a decreased, but stable, nanoLuc activity.

机构信息

Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar.

Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar.

出版信息

Int J Biol Macromol. 2024 Jun;269(Pt 1):131864. doi: 10.1016/j.ijbiomac.2024.131864. Epub 2024 Apr 29.

Abstract

NanoLuc (NLuc) luciferase has found extensive application in designing a range of biological assays, including gene expression analysis, protein-protein interaction, and protein conformational changes due to its enhanced brightness and small size. However, questions related to its mechanism of interaction with the substrate, furimazine, as well as bioluminescence activity remain elusive. Here, we combined molecular dynamics (MD) simulation and mutational analysis to show that the R162A mutation results in a decreased but stable bioluminescence activity of NLuc in living cells and in vitro. Specifically, we performed multiple, all-atom, explicit solvent MD simulations of the apo and furimazine-docked (holo) NLuc structures revealing differential dynamics of the protein in the absence and presence of the ligand. Further, analysis of trajectories for hydrogen bonds (H-bonds) formed between NLuc and furimazine revealed substantial H-bond interaction between R162 and Q32 residues. Mutation of the two residues in NLuc revealed a decreased but stable activity of the R162A, but not Q32A, mutant NLuc in live cell and in vitro assays performed using lysates prepared from cells expressing the proteins and with the furimazine substrate. In addition to highlighting the role of the R162 residue in NLuc activity, we believe that the mutant NLuc will find wide application in designing in vitro assays requiring extended monitoring of NLuc bioluminescence activity. SIGNIFICANCE: Bioluminescence has been extensively utilized in developing a variety of biological and biomedical assays. In this regard, engineering of brighter bioluminescent proteins, i.e. luciferases, has played a significant role. This is acutely exemplified by the engineering of the NLuc luciferase, which is small in size and displays much enhanced bioluminescence and thermal stability compared to previously available luciferases. While enhanced bioluminescent activity is desirable in a multitude of biological and biomedical assays, it would also be useful to develop variants of the protein that display a prolonged bioluminescence activity. This is specifically relevant in designing assays that require bioluminescence for extended periods, such as in the case of biosensors designed for monitoring slow enzymatic or cellular signaling reactions, without necessitating multiple rounds of luciferase substrate addition or any specialized reagents that result in increased assay costs. In the current manuscript, we report a mutant NLuc that possesses a stable and prolonged bioluminescence activity, albeit lower than the wild-type NLuc, and envisage a wider application of the mutant NLuc in designing biosensors for monitoring slower biological and biomedical events.

摘要

纳米萤光素酶 (NLuc) 由于其增强的亮度和较小的尺寸,已在设计一系列生物测定中得到广泛应用,包括基因表达分析、蛋白质-蛋白质相互作用以及蛋白质构象变化。然而,其与底物 furimazine 相互作用的机制以及生物发光活性的相关问题仍难以捉摸。在这里,我们结合分子动力学 (MD) 模拟和突变分析表明,R162A 突变导致 NLuc 在活细胞和体外的生物发光活性降低但稳定。具体来说,我们对 apo 和 furimazine 结合(全酶)NLuc 结构进行了多次全原子显式溶剂 MD 模拟,揭示了在没有配体的情况下蛋白质的不同动力学。此外,对 NLuc 与 furimazine 形成的氢键 (H-bonds) 轨迹的分析表明,R162 和 Q32 残基之间存在大量的 H-bond 相互作用。在活细胞和体外测定中,用来自表达蛋白质的细胞制备的裂解物和 furimazine 底物进行分析时,突变 NLuc 的这两个残基显示 R162A 突变体 NLuc 的活性降低但稳定,而 Q32A 突变体 NLuc 则不是。除了强调 R162 残基在 NLuc 活性中的作用外,我们相信突变 NLuc 将在设计需要延长监测 NLuc 生物发光活性的体外测定中得到广泛应用。意义:生物发光已广泛应用于开发各种生物和生物医学测定。在这方面,更亮的生物发光蛋白,即荧光素酶的工程化,发挥了重要作用。这在 NLuc 荧光素酶的工程化中得到了特别体现,与以前可用的荧光素酶相比,它体积小,生物发光和热稳定性大大增强。虽然在许多生物和生物医学测定中增强的生物发光活性是理想的,但开发显示延长生物发光活性的蛋白质变体也将是有用的。这在设计需要延长生物发光时间的测定中特别相关,例如用于监测缓慢酶或细胞信号反应的生物传感器,而无需多次添加荧光素酶底物或使用任何导致测定成本增加的特殊试剂。在当前的手稿中,我们报告了一种具有稳定和延长的生物发光活性的突变 NLuc,尽管低于野生型 NLuc,但我们设想突变 NLuc 在设计用于监测较慢的生物和生物医学事件的生物传感器方面有更广泛的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验