Suppr超能文献

交链顶孢霉菌通过调节宿主氧化还原稳态和植物激素信号传导来增强盐胁迫耐受性。

The fungus Acremonium alternatum enhances salt stress tolerance by regulating host redox homeostasis and phytohormone signaling.

作者信息

Berková Veronika, Berka Miroslav, Štěpánková Lenka, Kováč Ján, Auer Susann, Menšíková Simona, Ďurkovič Jaroslav, Kopřiva Stanislav, Ludwig-Müller Jutta, Brzobohatý Břetislav, Černý Martin

机构信息

Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic.

Department of Phytology, Technical University in Zvolen, Zvolen, Slovak Republic.

出版信息

Physiol Plant. 2024 May-Jun;176(3):e14328. doi: 10.1111/ppl.14328.

Abstract

While endophytic fungi offer promising avenues for bolstering plant resilience against abiotic stressors, the molecular mechanisms behind this biofortification remain largely unknown. This study employed a multifaceted approach, combining plant physiology, proteomic, metabolomic, and targeted hormonal analyses to illuminate the early response of Brassica napus to Acremonium alternatum during the nascent stages of their interaction. Notably, under optimal growth conditions, the initial reaction to fungus was relatively subtle, with no visible alterations in plant phenotype and only minor impacts on the proteome and metabolome. Interestingly, the identified proteins associated with the Acremonium response included TUDOR 1, Annexin D4, and a plastidic K+ efflux antiporter, hinting at potential processes that could counter abiotic stressors, particularly salt stress. Subsequent experiments validated this hypothesis, showcasing significantly enhanced growth in Acremonium-inoculated plants under salt stress. Molecular analyses revealed a profound impact on the plant's proteome, with over 50% of salt stress response proteins remaining unaffected in inoculated plants. Acremonium modulated ribosomal proteins, increased abundance of photosynthetic proteins, enhanced ROS metabolism, accumulation of V-ATPase, altered abundances of various metabolic enzymes, and possibly promoted abscisic acid signaling. Subsequent analyses validated the accumulation of this hormone and its enhanced signaling. Collectively, these findings indicate that Acremonium promotes salt tolerance by orchestrating abscisic acid signaling, priming the plant's antioxidant system, as evidenced by the accumulation of ROS-scavenging metabolites and alterations in ROS metabolism, leading to lowered ROS levels and enhanced photosynthesis. Additionally, it modulates ion sequestration through V-ATPase accumulation, potentially contributing to the observed decrease in chloride content.

摘要

虽然内生真菌为增强植物对非生物胁迫的抗性提供了有前景的途径,但这种生物强化背后的分子机制仍 largely 未知。本研究采用了多方面的方法,结合植物生理学、蛋白质组学、代谢组学和靶向激素分析,以阐明甘蓝型油菜在与链格孢霉相互作用的初期阶段对其的早期反应。值得注意的是,在最佳生长条件下,对真菌的初始反应相对微妙,植物表型无明显变化,对蛋白质组和代谢组的影响也较小。有趣的是,与链格孢霉反应相关的已鉴定蛋白质包括 Tudor 1、膜联蛋白 D4 和一种质体 K+ 外流反向转运蛋白,这暗示了可能对抗非生物胁迫因子,特别是盐胁迫的潜在过程。后续实验验证了这一假设,表明在盐胁迫下接种链格孢霉的植物生长显著增强。分子分析显示对植物蛋白质组有深远影响,接种植物中超过 50% 的盐胁迫反应蛋白未受影响。链格孢霉调节核糖体蛋白,增加光合蛋白的丰度,增强 ROS 代谢,V-ATPase 的积累,改变各种代谢酶的丰度,并可能促进脱落酸信号传导。后续分析验证了这种激素的积累及其增强的信号传导。总体而言,这些发现表明链格孢霉通过协调脱落酸信号传导来促进耐盐性,启动植物的抗氧化系统,如 ROS 清除代谢物的积累和 ROS 代谢的改变所证明的,导致 ROS 水平降低和光合作用增强。此外,它通过 V-ATPase 的积累调节离子螯合,可能导致观察到的氯离子含量降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验