Du Li, Barral Pierre, Cantara Michael, de Hond Julius, Lu Yu-Kun, Ketterle Wolfgang
MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Science. 2024 May 3;384(6695):546-551. doi: 10.1126/science.adh3023. Epub 2024 May 2.
Controlling ultracold atoms with laser light has greatly advanced quantum science. The wavelength of light sets a typical length scale for most experiments to the order of 500 nanometers (nm) or greater. In this work, we implemented a super-resolution technique that localizes and arranges atoms on a sub-50-nm scale, without any fundamental limit in resolution. We demonstrate this technique by creating a bilayer of dysprosium atoms and observing dipolar interactions between two physically separated layers through interlayer sympathetic cooling and coupled collective excitations. At 50-nm distance, dipolar interactions are 1000 times stronger than at 500 nm. For two atoms in optical tweezers, this should enable purely magnetic dipolar gates with kilohertz speed.
用激光控制超冷原子极大地推动了量子科学的发展。光的波长为大多数实验设定了一个典型的长度尺度,约为500纳米(nm)或更大。在这项工作中,我们实现了一种超分辨率技术,该技术能在亚50纳米尺度上定位和排列原子,且分辨率没有任何基本限制。我们通过创建镝原子双层,并通过层间交感冷却和耦合集体激发观察两个物理分离层之间的偶极相互作用,来演示这项技术。在50纳米的距离下,偶极相互作用比在500纳米时强1000倍。对于光镊中的两个原子,这应该能实现速度为千赫兹的纯磁偶极门。