Department of Mechanical Engineering, KU Leuven, Spoorwegstr. 12, 8200, Bruges, Belgium.
Haptic Intelligence Department, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany.
Biomech Model Mechanobiol. 2024 Aug;23(4):1369-1376. doi: 10.1007/s10237-024-01844-4. Epub 2024 May 3.
Predicting how the fingertip will mechanically respond to different stimuli can help explain human haptic perception and enable improvements to actuation approaches such as ultrasonic mid-air haptics. This study addresses this goal using high-fidelity 3D finite element analyses. We compute the deformation profiles and amplitudes caused by harmonic forces applied in the normal direction at four locations: the center of the finger pad, the side of the finger, the tip of the finger, and the oblique midpoint of these three sites. The excitation frequency is swept from 2.5 to 260 Hz. The simulated frequency response functions (FRFs) obtained for displacement demonstrate that the relative magnitudes of the deformations elicited by stimulating at each of these four locations greatly depend on whether only the excitation point or the entire finger is considered. The point force that induces the smallest local deformation can even cause the largest overall deformation at certain frequency intervals. Above 225 Hz, oblique excitation produces larger mean displacement amplitudes than the other three forces due to excitation of multiple modes involving diagonal deformation. These simulation results give novel insights into the combined influence of excitation location and frequency on the fingertip dynamic response, potentially facilitating the design of future vibration feedback devices.
预测指尖在不同刺激下的机械响应可以帮助解释人类触觉感知,并改进致动方法,如超声空中触觉。本研究使用高保真 3D 有限元分析来实现这一目标。我们计算了在四个位置(指尖垫中心、手指侧面、指尖和这三个位置的斜中点)施加法向谐波力引起的变形轮廓和幅度。激励频率从 2.5 到 260 Hz 扫频。对于位移获得的模拟频率响应函数(FRF)表明,在这四个位置中的每一个位置进行激励时引起的变形的相对幅度很大程度上取决于仅考虑激励点还是整个手指。在某些频率间隔下,引起最小局部变形的点力甚至可以导致最大的整体变形。在 225 Hz 以上,由于涉及对角变形的多个模式的激励,斜向激励比其他三个力产生更大的平均位移幅度。这些模拟结果提供了对激励位置和频率对指尖动态响应的综合影响的新见解,可能有助于设计未来的振动反馈设备。