文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

支化聚缩水甘油醚的生物相容性和内皮通透性:由缩水甘油与 B(CF) 在干燥和湿润条件下开环聚合生成。

Biocompatibility and Endothelial Permeability of Branched Polyglycidols Generated by Ring-Opening Polymerization of Glycidol with B(CF) under Dry and Wet Conditions.

机构信息

Donostia International Physics Center (DIPC), Paseo Manuel Lardizábal 4, Donostia-San Sebastián, 20018, Spain.

Centro de Física de Materiales, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, Donostia-San Sebastián, 20018, Spain.

出版信息

Biomacromolecules. 2024 Jun 10;25(6):3583-3595. doi: 10.1021/acs.biomac.4c00210. Epub 2024 May 4.


DOI:10.1021/acs.biomac.4c00210
PMID:38703359
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11170947/
Abstract

Polyglycidol or polyglycerol (PG), a polyether widely used in biomedical applications, has not been extensively studied in its branched cyclic form (PG), despite extensive research on hyperbranched PG (HPG). This study explores the biomedical promise of PG, particularly its ability to cross the blood-brain barrier (BBB). We evaluate biocompatibility, endothelial permeability, and formation of branched linear PG (PG) as topological impurities in the presence of water. Small angle X-ray scattering in solution revealed a fractal dimension of approximately two for PG and the mixture PG, suggesting random branching. Comparisons of cytotoxicity and endothelial permeability between PG, PG, and HPG in a BBB model using hCMEC/D3 cells showed different biocompatibility profiles and higher endothelial permeability for HPG. PG showed a tendency to accumulate around cell nuclei, in contrast to the behavior of HPG. This study contributes to the understanding of the influence of polymer topology on biological behavior.

摘要

聚甘油或聚丙二醇(PG)是一种广泛应用于生物医学领域的多醚,尽管对超支化 PG(HPG)进行了广泛的研究,但对其支化环状形式(PG)的研究却相对较少。本研究探讨了 PG 在生物医学方面的应用前景,特别是其穿过血脑屏障(BBB)的能力。我们评估了 PG 在水中的生物相容性、内皮通透性和支化线性 PG(PG)的形成情况。溶液中的小角度 X 射线散射表明 PG 和 PG 混合物的分形维数约为 2,表明存在随机分支。在使用 hCMEC/D3 细胞的 BBB 模型中,PG、PG 和 HPG 的细胞毒性和内皮通透性比较表明,HPG 的生物相容性和内皮通透性更高。PG 有在细胞核周围聚集的趋势,而 HPG 则没有。这项研究有助于了解聚合物拓扑结构对生物行为的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/5639904910e3/bm4c00210_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/f7ec1da7eba5/bm4c00210_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/cdf746c17565/bm4c00210_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/febd795394f3/bm4c00210_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/c028b9bf1f46/bm4c00210_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/2481f573e857/bm4c00210_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/e6e609decdb5/bm4c00210_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/1f22df23da2d/bm4c00210_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/658e442da3f6/bm4c00210_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/357b9140aa83/bm4c00210_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/1e526167a744/bm4c00210_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/2c85ea32e356/bm4c00210_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/5639904910e3/bm4c00210_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/f7ec1da7eba5/bm4c00210_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/cdf746c17565/bm4c00210_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/febd795394f3/bm4c00210_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/c028b9bf1f46/bm4c00210_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/2481f573e857/bm4c00210_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/e6e609decdb5/bm4c00210_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/1f22df23da2d/bm4c00210_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/658e442da3f6/bm4c00210_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/357b9140aa83/bm4c00210_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/1e526167a744/bm4c00210_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/2c85ea32e356/bm4c00210_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2c8/11170947/5639904910e3/bm4c00210_0011.jpg

相似文献

[1]
Biocompatibility and Endothelial Permeability of Branched Polyglycidols Generated by Ring-Opening Polymerization of Glycidol with B(CF) under Dry and Wet Conditions.

Biomacromolecules. 2024-6-10

[2]
Controlled branching of polyglycidol and formation of protein-glycidol bioconjugates via a graft-from approach with "PEG-like" arms.

Chem Commun (Camb). 2013-3-25

[3]
Nb and Ta benzotriazole or benzoxazole phenoxide complexes as catalysts for the ring-opening polymerization of glycidol to synthesize hyperbranched polyglycerols.

Dalton Trans. 2017-11-23

[4]
Synthesis, characterization, and biocompatibility of biodegradable hyperbranched polyglycerols from acid-cleavable ketal group functionalized initiators.

Biomacromolecules. 2012-9-5

[5]
Hyperbranched Copolymers Based on Glycidol and Amino Glycidyl Ether: Highly Biocompatible Polyamines Sheathed in Polyglycerols.

Biomacromolecules. 2016-11-14

[6]
Biocompatibility testing of branched and linear polyglycidol.

Biomacromolecules. 2006-3

[7]
Bacteria-repulsive polyglycerol surfaces by grafting polymerization onto aminopropylated surfaces.

Langmuir. 2012-10-30

[8]
Controlled quercetin release from high-capacity-loading hyperbranched polyglycerol-functionalized graphene oxide.

Int J Nanomedicine. 2018-10-5

[9]
One-pot synthesis of linear-hyperbranched amphiphilic block copolymers based on polyglycerol derivatives and their micelles.

Biomacromolecules. 2013-6-6

[10]
Cationic Copolymerization of 3,3-Bis(hydroxymethyl)oxetane and Glycidol: Biocompatible Hyperbranched Polyether Polyols with High Content of Primary Hydroxyl Groups.

Biomacromolecules. 2015-10-12

引用本文的文献

[1]
Varying the Core Topology in All-Glycidol Hyperbranched Polyglycerols: Synthesis and Physical Characterization.

Macromol Rapid Commun. 2025-2

本文引用的文献

[1]
Polyether-based waterborne synergists: effect of polymer topologies on pigment dispersion.

RSC Adv. 2023-10-24

[2]
One to one comparison of cell-free synthesized erythropoietin conjugates modified with linear polyglycerol and polyethylene glycol.

Sci Rep. 2023-4-19

[3]
Poly(Glycerol)-Based Biomedical Nanodevices Constructed by Functional Programming on Inorganic Nanoparticles for Cancer Nanomedicine.

Acc Chem Res. 2023-1-17

[4]
Self-Healable, Injectable Hydrogel with Enhanced Clotrimazole Solubilization as a Potential Therapeutic Platform for Gynecology.

Biomacromolecules. 2022-10-10

[5]
Polyglycerols as Multi-Functional Platforms: Synthesis and Biomedical Applications.

Polymers (Basel). 2022-6-30

[6]
Polymer selection impacts the pharmaceutical profile of site-specifically conjugated Interferon-α2a.

J Control Release. 2022-8

[7]
Activated Monomer Mechanism (AMM) in Cationic Ring-Opening Polymerization. The Origin of the AMM and Further Development in Polymerization of Cyclic Esters.

ACS Macro Lett. 2021-11-16

[8]
Modification of carbon-based nanomaterials by polyglycerol: recent advances and applications.

RSC Adv. 2021-12-20

[9]
Surface-Grafted Hyperbranched Polyglycerol Coating: Varying Extents of Fouling Resistance across a Range of Proteins and Cells.

ACS Appl Bio Mater. 2020-6-15

[10]
Linear Polyglycerol for N-terminal-selective Modification of Interleukin-4.

J Pharm Sci. 2022-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索