Honkanen Mari, Lukinmaa Henri, Kaappa Sami, Santa-Aho Suvi, Kajan Jaakko, Savolainen Samuli, Azzari Lucio, Laurson Lasse, Palosaari Mikko, Vippola Minnamari
Tampere Microscopy Center, Tampere University, P.O. Box 692, 33014 Tampere University, Finland.
Stresstech Oy, Tikkutehtaantie 1, 40800 Jyväskylä, Finland.
Ultramicroscopy. 2024 Aug;262:113979. doi: 10.1016/j.ultramic.2024.113979. Epub 2024 Apr 26.
We built a custom-made holder with a Hall-effect sensor to measure the single point magnetic flux density inside a transmission electron microscope (TEM, JEM-F200, JEOL). The measurement point is at the same place as the sample inside the TEM. We utilized information collected with the Hall-effect sensor holder to study magnetic domain wall (DW) dynamics by in-situ Lorentz microscopy. We generated an external magnetic field to the sample using the objective lens (OL) of the TEM. Based on our measurements with the Hall-effect sensor holder, the OL has nearly linear response, and when it is switched off, the strength of the magnetic field in the sample region is very close to 0 mT. A ferritic-pearlitic sample studied has globular and lamellar cementite (FeC) carbides in the ferrite matrix. Based on the in-situ Lorentz microscopy experiments, DWs in the ferritic matrix perpendicular to the lamellar carbides start to move first at ∼10 mT. At 160 mT, DWs inside the globular carbide start to disappear, and the saturation occurs at ∼210 mT. At 288 mT, the DWs parallel to the lamellar carbides still exist. Thus, these lamellar carbides are very strong pinning sites for DWs. We also run dynamical micromagnetic simulations to reproduce the DW disappearance in the globular carbide. As in the in-situ experiments, the DWs stay stable until the external field reaches the magnitude of 160 mT, and the DWs disappear before the field is 214 mT. In general, the micromagnetic simulations supported very well the interpretation of the experimental findings.
我们制作了一个带有霍尔效应传感器的定制支架,用于测量透射电子显微镜(TEM,JEM-F200,JEOL)内部的单点磁通密度。测量点与TEM内部样品的位置相同。我们利用通过霍尔效应传感器支架收集的信息,通过原位洛伦兹显微镜研究磁畴壁(DW)动力学。我们使用TEM的物镜(OL)向样品施加外部磁场。根据我们使用霍尔效应传感器支架进行的测量,OL具有近乎线性的响应,并且当它关闭时,样品区域中的磁场强度非常接近0 mT。所研究的铁素体-珠光体样品在铁素体基体中具有球状和片状渗碳体(FeC)碳化物。基于原位洛伦兹显微镜实验,垂直于片状碳化物的铁素体基体中的DW在约10 mT时开始首先移动。在160 mT时,球状碳化物内部的DW开始消失,并且在约210 mT时达到饱和。在288 mT时,平行于片状碳化物的DW仍然存在。因此,这些片状碳化物是DW的非常强的钉扎位点。我们还进行了动态微磁模拟,以再现球状碳化物中DW的消失。与原位实验一样,DW在外部磁场达到160 mT之前保持稳定,并且在磁场达到214 mT之前DW消失。总体而言,微磁模拟很好地支持了对实验结果的解释。