Suppr超能文献

底质再悬浮作用是边缘海有机碳迁移和再平衡的驱动力。

Sediment resuspension as a driving force for organic carbon transference and rebalance in marginal seas.

机构信息

Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China.

School of Earth and Space Sciences, Peking University, Beijing 100871, China.

出版信息

Water Res. 2024 Jun 15;257:121672. doi: 10.1016/j.watres.2024.121672. Epub 2024 Apr 24.

Abstract

The transfer of particulate organic carbon (POC) to dissolved organic carbon (DOC; OC transfer) is crucial for the marine carbon cycle. Sediment resuspension driven by hydrodynamic forcing can affect the burial of sedimentary POC and benthic biological processes in marginal sea. However, the role of sediment grain size fraction on OC transfer and the subsequent impact on OC cycling remain unknown. Here, we conduct sediment resuspension simulations by resuspending grain-size fractionated sediments (< 20, 20-63, and > 63 μm) into filtered seawater, combined with analyses of OC content, optical characteristics, C and C isotope compositions, and molecular dynamics simulations to investigate OC transfer and its regulations on OC bioavailability under sediment resuspension. Our results show that the relative intensities of terrestrial humic-like OC (refractory DOC) increase in resuspension experiments of < 20, 20-63, and > 63 μm sediments by 0.14, 0.01, and 0.03, respectively, likely suggesting that sediment resuspension drives refractory DOC transfer into seawater. The variations in the relative intensities of microbial protein-like DOC are linked to the change of terrestrial humic-like OC, accompanied by higher DOC content and reactivity in seawater, particularly in finer sediments resuspension experiments. This implies that transferred DOC likely fuels microbial growth, contributing to the subsequent enhancement of DOC bioavailability in seawater. Our results also show that the POC contents increase by 0.35 %, 0.66 %, and 0.93 % in < 20, 20-63, and > 63 μm resuspension experiments at the end of incubation, respectively. This suggests that the re-absorption of OC on particles may be a significant process, but previously unrecognized during sediment resuspension. Overall, our findings suggest that sediment resuspension promotes the OC transfer, and the magnitudes of OC transfer further influence the DOC and POC properties by inducing microbial production and respiration. These processes significantly affect the dynamics and recycling of biological carbon pump in shallow marginal seas.

摘要

颗粒态有机碳(POC)向溶解态有机碳(DOC;OC 转移)的转移对海洋碳循环至关重要。水动力驱动的沉积物再悬浮会影响边缘海的沉积物 POC 埋藏和底栖生物过程。然而,沉积物粒径对 OC 转移的作用以及随后对 OC 循环的影响仍不清楚。在这里,我们通过将粒径分级的沉积物(<20、20-63 和>63μm)再悬浮到过滤海水中来进行沉积物再悬浮模拟,结合 OC 含量、光学特性、C 和 C 同位素组成以及分子动力学模拟分析,研究了沉积物再悬浮下 OC 转移及其对 OC 生物可利用性的调节作用。我们的结果表明,<20、20-63 和>63μm 沉积物再悬浮实验中,陆源腐殖质样 OC(难降解 DOC)的相对强度分别增加了 0.14、0.01 和 0.03,这可能表明沉积物再悬浮驱动难降解 DOC 向海水中转移。微生物蛋白样 DOC 的相对强度变化与陆源腐殖质样 OC 的变化有关,伴随着海水中 DOC 含量和反应性的增加,特别是在较细的沉积物再悬浮实验中。这意味着转移的 DOC 可能为微生物生长提供燃料,有助于随后增加海水中 DOC 的生物可利用性。我们的结果还表明,<20、20-63 和>63μm 再悬浮实验结束时,POC 含量分别增加了 0.35%、0.66%和 0.93%。这表明 OC 在颗粒上的再吸收可能是一个重要过程,但在沉积物再悬浮过程中尚未得到认可。总的来说,我们的研究结果表明,沉积物再悬浮促进了 OC 的转移,而 OC 转移的幅度通过诱导微生物的产生和呼吸,进一步影响了 DOC 和 POC 的性质。这些过程显著影响了浅海边缘海生物碳泵的动力学和循环。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验