Suppr超能文献

金红石型氧化铱中的晶界缺陷工程促进高效稳定的酸性水氧化

Grain Boundary Defect Engineering in Rutile Iridium Oxide Boosts Efficient and Stable Acidic Water Oxidation.

作者信息

Zhang Ning, Fan Yingqi, Wang Depeng, Yang Hong, Yu Yang, Liu Jianwei, Zeng Jianrong, Bao Di, Zhong Haixia, Zhang Xinbo

机构信息

State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.

School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.

出版信息

Chemistry. 2024 Jul 5;30(38):e202400651. doi: 10.1002/chem.202400651. Epub 2024 Jun 21.

Abstract

Proton exchange membrane water electrolysis (PEMWE) is considered a promising technology for coupling with renewable energy sources to achieve clean hydrogen production. However, constrained by the sluggish kinetics of the anodic oxygen evolution reaction (OER) and the acidic abominable environment render the grand challenges in developing the active and stable OER electrocatalyst, leading to low efficiency of PEMWE. Herein, we develop the rutile-type IrO nanoparticles with abundant grain boundaries and the continuous nanostructure through the joule heating and sacrificial template method. The optimal candidate (350-IrO) demonstrates remarkable electrocatalytic activity and stability during the OER, presenting a promising advancement for efficient PEMWE. DFT calculations verified that grain boundaries can modulate the electronic structure of Ir sites and optimize the adsorption of oxygen intermediates, resulting in the accelerated kinetics. 350-IrO affords a rapid OER process with 20 times higher mass activity (0.61 A mg ) than the commercial IrO at 1.50 V vs. RHE. Benefiting from the reduced overpotential and the preservation of the stable rutile structure, 350-IrO exhibits the stability of 200 h test at 10 mA cm with only trace decay of 11.8 mV. Moreover, the assembled PEMWE with anode 350-IrO catalyst outputs the current density up to 2 A cm with only 1.84 V applied voltage, long-term operation for 100 h without obvious performance degradation at 1 A cm.

摘要

质子交换膜水电解(PEMWE)被认为是一种很有前景的技术,可与可再生能源耦合以实现清洁制氢。然而,受限于阳极析氧反应(OER)缓慢的动力学,以及酸性恶劣环境给开发活性和稳定的OER电催化剂带来了巨大挑战,导致PEMWE效率低下。在此,我们通过焦耳加热和牺牲模板法制备了具有丰富晶界和连续纳米结构的金红石型IrO纳米颗粒。最佳候选物(350-IrO)在OER过程中表现出显著的电催化活性和稳定性,为高效PEMWE带来了有前景的进展。密度泛函理论(DFT)计算证实,晶界可以调节Ir位点的电子结构并优化氧中间体的吸附,从而加快动力学。在相对于可逆氢电极(RHE)为1.50 V时,350-IrO的OER过程快速,其质量活性(0.61 A mg)比商业IrO高20倍。受益于过电位的降低和稳定金红石结构的保留,350-IrO在10 mA cm下进行200 h测试时表现出稳定性,仅有11.8 mV的微量衰减。此外,组装有阳极350-IrO催化剂的PEMWE在仅施加1.84 V电压时输出电流密度高达2 A cm,在1 A cm下长期运行100 h无明显性能下降。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验