Reponen Antti-Pekka M, Londi Giacomo, Matthews Campbell S B, Olivier Yoann, Romanov Alexander S, Greenham Neil C, Gillett Alexander J
Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, U.K.
Laboratory for Computational Modeling of Functional Materials Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000, Namur, Belgium.
Angew Chem Int Ed Engl. 2024 Jul 15;63(29):e202402052. doi: 10.1002/anie.202402052. Epub 2024 Jun 17.
Carbene-metal-amides (CMAs) are emerging delayed fluorescence materials for organic light-emitting diode (OLED) applications. CMAs possess fast, efficient emission owing to rapid forward and reverse intersystem crossing (ISC) rates. The resulting dynamic equilibrium between singlet and triplet spin manifolds distinguishes CMAs from most purely organic thermally activated delayed fluorescence emitters. However, direct experimental triplet characterization in CMAs is underutilized, limiting our detailed understanding of the ISC mechanism. In this work, we combine time-resolved spectroscopy with tuning of state energies through environmental polarity and metal substitution, focusing on the interplay between charge-transfer (CT) and local exciton (LE) triplets. Unlike previous photophysical work, we investigate evaporated host : guest films of CMAs and small-molecule hosts for increased device relevance. Transient absorption reveals an evolution in the triplet excited-state absorption (ESA) consistent with a change in orbital character between hosts with differing dielectric constants. Using quantum chemical calculations, we simulate ESAs of the lowest triplet states, highlighting the contribution of only CT and donor-moiety LE states to spectral features, with no strong evidence for a low-lying acceptor-centered LE. Thus, our work provides a blueprint for understanding the role of triplet excited states in CMAs which will enable further intelligent optimization of this promising class of materials.
卡宾金属酰胺(CMA)是用于有机发光二极管(OLED)应用的新兴延迟荧光材料。由于快速的正向和反向系间窜越(ISC)速率,CMA具有快速、高效的发光特性。单重态和三重态自旋流形之间由此产生的动态平衡使CMA有别于大多数纯有机热激活延迟荧光发射体。然而,CMA中直接的实验三重态表征未得到充分利用,限制了我们对ISC机制的详细理解。在这项工作中,我们将时间分辨光谱与通过环境极性和金属取代来调节态能量相结合,重点关注电荷转移(CT)三重态和局域激子(LE)三重态之间的相互作用。与之前的光物理研究不同,我们研究了CMA的蒸发主体:客体薄膜以及小分子主体,以提高与器件的相关性。瞬态吸收揭示了三重态激发态吸收(ESA)的演变,这与具有不同介电常数的主体之间轨道特征的变化一致。通过量子化学计算,我们模拟了最低三重态的ESA,突出了只有CT和供体部分的LE态对光谱特征的贡献,没有确凿证据表明存在低能的以受体为中心的LE态。因此,我们的工作为理解三重态激发态在CMA中的作用提供了蓝图,这将有助于对这类有前景的材料进行进一步的智能优化。