用于生成合成胃电图时间序列的数据增强。

Data augmentation for generating synthetic electrogastrogram time series.

机构信息

University of Belgrade-School of Electrical Engineering, Bulevar Kralja Aleksandra 73, 11000, Belgrade, Serbia.

Faculty of Electrical Engineering, University of Ljubljana, Tržaška Cesta 25, 1000, Ljubljana, Slovenia.

出版信息

Med Biol Eng Comput. 2024 Sep;62(9):2879-2891. doi: 10.1007/s11517-024-03112-0. Epub 2024 May 6.

Abstract

To address an emerging need for large number of diverse datasets for rigor evaluation of signal processing techniques, we developed and evaluated a new method for generating synthetic electrogastrogram time series. We used electrogastrography (EGG) data from an open database to set model parameters and statistical tests to evaluate synthesized data. Additionally, we illustrated method customization for generating artificial EGG time series alterations caused by the simulator sickness. Proposed data augmentation method generates synthetic EGG data with specified duration, sampling frequency, recording state (postprandial or fasting state), overall noise and breathing artifact injection, and pauses in the gastric rhythm (arrhythmia occurrence) with statistically significant difference between postprandial and fasting states in > 70% cases while not accounting for individual differences. Features obtained from the synthetic EGG signal resembling simulator sickness occurrence displayed expected trends. The code for generation of synthetic EGG time series is not only freely available and can be further customized to assess signal processing algorithms but also may be used to increase data diversity for training artificial intelligence (AI) algorithms. The proposed approach is customized for EGG data synthesis but can be easily utilized for other biosignals with similar nature such as electroencephalogram.

摘要

为了满足对大量多样化数据集的需求,以便严格评估信号处理技术,我们开发并评估了一种新的生成合成胃电图时间序列的方法。我们使用来自开放数据库的胃电图 (EGG) 数据来设置模型参数和统计测试,以评估合成数据。此外,我们还说明了用于生成由模拟器疾病引起的人工 EGG 时间序列改变的方法定制。所提出的数据增强方法可以生成具有指定持续时间、采样频率、记录状态(餐后或空腹状态)、整体噪声和呼吸伪影注入以及胃节律暂停(心律失常发生)的合成 EGG 数据,并且在超过 70%的情况下,餐后和空腹状态之间具有统计学上显著差异,而不考虑个体差异。从类似于模拟器疾病发生的合成 EGG 信号中获得的特征显示出预期的趋势。生成合成 EGG 时间序列的代码不仅免费提供,并且可以进一步定制以评估信号处理算法,还可以用于增加人工智能 (AI) 算法的训练数据多样性。所提出的方法针对 EGG 数据合成进行了定制,但可以轻松用于具有类似性质的其他生物信号,例如脑电图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索