School of Nursing, Hengyang Medical School, University of South China, Hengyang, China.
School-Enterprise Cooperative Innovation and Entrepreneurship Education Base, University of South China-Hunan Lantern Medical Technology Co., Ltd, Hengyang, China.
J Orthop Surg (Hong Kong). 2024 May-Aug;32(2):10225536241249591. doi: 10.1177/10225536241249591.
Deep vein thrombosis (DVT) is one of the common complications after joint replacement, which seriously affects the quality of life of patients. We systematically searched nine databases, a total of eleven studies on prediction models to predict DVT after knee/hip arthroplasty were included, eight prediction models for DVT after knee/hip arthroplasty were chosen and compared. The results of network meta-analysis showed the XGBoost model (SUCRA 100.0%), LASSO (SUCRA 84.8%), ANN (SUCRA 72.1%), SVM (SUCRA 53.0%), ensemble model (SUCRA 40.8%), RF (SUCRA 25.6%), LR (SUCRA 21.8%), GBT (SUCRA 1.1%), and best prediction performance is XGB (SUCRA 100%). Results show that the XGBoost model has the best predictive performance. Our study provides suggestions and directions for future research on the DVT prediction model. In the future, well-designed studies are still needed to validate this model.
深静脉血栓形成(DVT)是关节置换术后常见的并发症之一,严重影响患者的生活质量。我们系统地检索了九个数据库,共纳入了十一篇关于预测膝关节/髋关节置换术后 DVT 发生的预测模型研究,选择并比较了八个膝关节/髋关节置换术后 DVT 的预测模型。网络荟萃分析结果显示,XGBoost 模型(SUCRA 100.0%)、LASSO(SUCRA 84.8%)、ANN(SUCRA 72.1%)、SVM(SUCRA 53.0%)、集成模型(SUCRA 40.8%)、RF(SUCRA 25.6%)、LR(SUCRA 21.8%)、GBT(SUCRA 1.1%)的预测性能较好,最佳预测性能的模型为 XGB(SUCRA 100%)。结果表明,XGBoost 模型具有较好的预测性能。本研究为 DVT 预测模型的未来研究提供了建议和方向。未来仍需要精心设计的研究来验证该模型。