González-Herrero Sergi, Sigmund Armin, Haugeneder Michael, Hames Océane, Huwald Hendrik, Fiddes Joel, Lehning Michael
WSL Institute for Snow and Avalanche Research (SLF), Davos, Switzerland.
Environmental Engineering Institute, Laboratory of Cryospheric Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Valais/Wallis, Sion, Switzerland.
Boundary Layer Meteorol. 2024;190(5):24. doi: 10.1007/s10546-024-00864-y. Epub 2024 May 4.
In absence of the high-frequency measurements of wind components, sonic temperature and water vapour required by the eddy covariance (EC) method, Monin-Obukhov similarity theory (MOST) is often used to calculate heat fluxes. However, MOST requires assumptions of stability corrections and roughness lengths. In most environments and weather situations, roughness length and stability corrections have high uncertainty. Here, we revisit the modified Bowen-ratio method, which we call C-method, to calculate the latent heat flux over snow. In the absence of high-frequency water vapour measurements, we use sonic anemometer data, which have become much more standard. This method uses the exchange coefficient for sensible heat flux to estimate latent-heat flux. Theory predicts the two exchange coefficients to be equal and the method avoids assuming roughness lengths and stability corrections. We apply this method to two datasets from high mountain (Alps) and polar (Antarctica) environments and compare it with MOST and the three-layer model (3LM). We show that roughness length has a great impact on heat fluxes calculated using MOST and that different calculation methods over snow lead to very different results. Instead, the 3LM leads to good results, in part due to the fact that it avoids roughness length assumptions to calculate heat fluxes. The C-method presented performs overall better or comparable to established MOST with different stability corrections and provides results comparable to the direct EC method. An application of this method is provided for a new station installed in the Pamir mountains.
The online version contains supplementary material available at 10.1007/s10546-024-00864-y.
在缺乏涡度相关(EC)方法所需的风分量、声温及水汽高频测量数据时,莫宁 - 奥布霍夫相似理论(MOST)常被用于计算热通量。然而,MOST需要稳定性校正和粗糙度长度的假设。在大多数环境和天气情况下,粗糙度长度和稳定性校正具有很高的不确定性。在此,我们重新审视一种改进的鲍文比方法,即我们所称的C方法,用于计算雪面的潜热通量。在缺乏高频水汽测量数据的情况下,我们使用已更为标准的声学风速仪数据。该方法利用感热通量的交换系数来估算潜热通量。理论预测这两个交换系数相等,且该方法避免了对粗糙度长度和稳定性校正的假设。我们将此方法应用于来自高山(阿尔卑斯山)和极地(南极洲)环境的两个数据集,并将其与MOST和三层模型(3LM)进行比较。我们表明,粗糙度长度对使用MOST计算的热通量有很大影响,并且雪面上不同的计算方法会导致非常不同的结果。相反,3LM得出了较好的结果,部分原因是它在计算热通量时避免了粗糙度长度假设。所提出的C方法总体上表现更好,或与具有不同稳定性校正的既定MOST相当,并提供了与直接EC方法相当的结果。文中还给出了该方法在帕米尔山脉新安装站点的应用。
在线版本包含可在10.1007/s10546 - 024 - 00864 - y获取的补充材料。