Teixeira Polez Roberta, Huynh Ngoc, Pridgeon Chris S, Valle-Delgado Juan José, Harjumäki Riina, Österberg Monika
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland.
Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland.
Mater Today Bio. 2024 Apr 17;26:101065. doi: 10.1016/j.mtbio.2024.101065. eCollection 2024 Jun.
The recent FDA decision to eliminate animal testing requirements emphasises the role of cell models, such as spheroids, as regulatory test alternatives for investigations of cellular behaviour, drug responses, and disease modelling. The influence of environment on spheroid formation are incompletely understood, leading to uncertainty in matrix selection for scaffold-based 3D culture. This study uses atomic force microscopy-based techniques to quantify cell adhesion to Matrigel and cellulose nanofibrils (CNF), and cell-cell adhesion forces, and their role in spheroid formation of hepatocellular carcinoma (HepG2) and induced pluripotent stem cells (iPS(IMR90)-4). Results showed different cell behaviour in CNF and Matrigel cultures. Both cell lines formed compact spheroids in CNF but loose cell aggregates in Matrigel. Interestingly, the type of cell adhesion protein, and not the bond strength, appeared to be a key factor in the formation of compact spheroids. The gene expression of E- and N-cadherins, proteins on cell membrane responsible for cell-cell interactions, was increased in CNF culture, leading to formation of compact spheroids while Matrigel culture induced integrin-laminin binding and downregulated E-cadherin expression, resulting in looser cell aggregates. These findings enhance our understanding of cell-biomaterial interactions in 3D cultures and offer insights for improved 3D cell models, culture biomaterials, and applications in drug research.
美国食品药品监督管理局(FDA)最近决定取消动物试验要求,这凸显了细胞模型(如球体)作为细胞行为、药物反应和疾病建模研究的监管测试替代方法的作用。环境对球体形成的影响尚未完全了解,这导致基于支架的3D培养中基质选择存在不确定性。本研究使用基于原子力显微镜的技术来量化细胞与基质胶和纤维素纳米纤维(CNF)的粘附力、细胞间粘附力,以及它们在肝癌(HepG2)和诱导多能干细胞(iPS(IMR90)-4)球体形成中的作用。结果显示,在CNF和基质胶培养中细胞行为不同。两种细胞系在CNF中均形成紧密的球体,但在基质胶中形成松散的细胞聚集体。有趣的是,细胞粘附蛋白的类型而非结合强度似乎是紧密球体形成的关键因素。负责细胞间相互作用的细胞膜蛋白E-钙粘蛋白和N-钙粘蛋白的基因表达在CNF培养中增加,导致紧密球体的形成,而基质胶培养诱导整合素-层粘连蛋白结合并下调E-钙粘蛋白表达,导致细胞聚集体更松散。这些发现增进了我们对3D培养中细胞与生物材料相互作用的理解,并为改进3D细胞模型及培养生物材料以及药物研究中的应用提供了见解。