Fernández Fernández Óscar, Costa-Frossard Lucienne, Martínez Ginés Maria Luisa, Montero Escribano Paloma, Prieto González José María, Ramió-Torrentà Lluís, Aladro Yolanda, Alonso Torres Ana, Álvarez Rodríguez Elena, Labiano-Fontcuberta Andrés, Landete Pascual Lamberto, Miralles Martínez Ambrosio, Moral Torres Ester, Oliva-Nacarino Pedro
Department of Pharmacology, Faculty of Medicine, Institute of Biomedical Research of Malaga (IBIMA), University of Malaga, Málaga, Spain.
Department of Neurology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute (IRYCIS), Universidad de Alcalá, Madrid, Spain.
Front Neurol. 2024 Apr 19;15:1371644. doi: 10.3389/fneur.2024.1371644. eCollection 2024.
The Spasticity-Plus Syndrome (SPS) in multiple sclerosis (MS) refers to a combination of spasticity and other signs/symptoms such as spasms, cramps, bladder dysfunction, tremor, sleep disorder, pain, and fatigue. The main purpose is to develop a user-friendly tool that could help neurologists to detect SPS in MS patients as soon as possible.
A survey research based on a conjoint analysis approach was used. An orthogonal factorial design was employed to form 12 patient profiles combining, at random, the eight principal SPS signs/symptoms. Expert neurologists evaluated in a survey and a logistic regression model determined the weight of each SPS sign/symptom, classifying profiles as SPS or not.
72 neurologists participated in the survey answering the conjoint exercise. Logistic regression results of the survey showed the relative contribution of each sign/symptom to the classification as SPS. Spasticity was the most influential sign, followed by spasms, tremor, cramps, and bladder dysfunction. The goodness of fit of the model was appropriate (AUC = 0.816). Concordance between the experts' evaluation vs. model estimation showed strong Pearson's ( = 0.936) and Spearman's ( = 0.893) correlation coefficients. The application of the algorithm provides with a probability of showing SPS and the following ranges are proposed to interpret the results: high (> 60%), moderate (30-60%), or low (< 30%) probability of SPS.
This study offers an algorithmic tool to help healthcare professionals to identify SPS in MS patients. The use of this tool could simplify the management of SPS, reducing side effects related with polypharmacotherapy.
多发性硬化症(MS)中的痉挛加综合征(SPS)指的是痉挛与其他体征/症状的组合,如抽搐、痉挛、膀胱功能障碍、震颤、睡眠障碍、疼痛和疲劳。主要目的是开发一种用户友好的工具,以帮助神经科医生尽早在MS患者中检测出SPS。
采用基于联合分析方法的调查研究。采用正交析因设计,随机组合8种主要的SPS体征/症状,形成12个患者概况。专家神经科医生在一项调查中进行评估,并通过逻辑回归模型确定每个SPS体征/症状的权重,将概况分类为是否患有SPS。
72名神经科医生参与了回答联合练习的调查。调查的逻辑回归结果显示了每个体征/症状对SPS分类的相对贡献。痉挛是最有影响力的体征,其次是抽搐、震颤、痉挛和膀胱功能障碍。模型的拟合优度合适(AUC = 0.816)。专家评估与模型估计之间的一致性显示出很强的皮尔逊相关系数(= 0.936)和斯皮尔曼相关系数(= 0.893)。该算法的应用提供了显示SPS的概率,并建议使用以下范围来解释结果:高(> 60%)、中(30 - 60%)或低(< 30%)SPS概率。
本研究提供了一种算法工具,以帮助医疗保健专业人员识别MS患者中的SPS。使用该工具可以简化SPS的管理,减少与多药治疗相关的副作用。