Sports Department, Luoyang Normal University, Luoyang, 471934, Henan, China.
BMC Psychol. 2024 May 6;12(1):249. doi: 10.1186/s40359-024-01743-4.
This paper highlights the need for intelligent analysis of students' behavioral states in physical education tasks. The hand-ring inertial data is used to identify students' motion sequence states. First, statistical feature extraction is performed based on the acceleration and angular velocity data collected from the bracelet. After completing the filtering and noise reduction of the data, we perform feature extraction by Back Propagation Neural Network (BPNN) and use the sliding window method for analysis. Finally, the classification capability of the model sequence is enhanced by the Hidden Markov Model (HMM). The experimental results indicate that the classification accuracy of student action sequences in physical education exceeds 96% after optimization by the HMM method. This provides intelligent means and new ideas for future student state recognition in physical education and teaching reform.
本文强调了在体育任务中对学生行为状态进行智能分析的必要性。使用手环惯性数据来识别学生的运动序列状态。首先,根据从手环中收集的加速度和角速度数据进行统计特征提取。在完成数据的滤波和降噪后,我们使用反向传播神经网络(BPNN)进行特征提取,并使用滑动窗口方法进行分析。最后,通过隐马尔可夫模型(HMM)增强模型序列的分类能力。实验结果表明,通过 HMM 方法优化后,学生体育动作序列的分类准确率超过 96%。这为未来体育教学中学生状态识别和教学改革提供了智能手段和新的思路。